
//,_S,'_/GF- _"7---
205U_4

/

GEOPOTENTIAL ERROR ANALYSIS FROM SATELLITE

GRADIOMETER AND GLOBAL POSITIONING SYSTEM

OBSERVABLES ON PARALLEL ARCHITECTURE

Gregory A. Baker
CSR-97-5 October 1997

CENTER FOR SPACE RESEARCH

THE UNIVERSITY OF TEXAS AT AUSTIN AUSTIN, TEXAS

GEOPOTENTIAL ERROR ANALYSIS FROM SATELLITE

GRADIOMETER AND GLOBAL POSITIONING SYSTEM

OBSERVABLES ON PARALLEL ARCHITECTURE

by

Gregory A. Baker

Center for Space Research

The University of Texas at Austin

October 1997

CSR-97-5

Final report for the

National Aeronautics and Space Administration

Grant No. NAG5-2511

by the

Center for Space Research

The University of Texas at Austin

Austin, TX 78712

Principal Investigator:

Dr. Bob E. Schutz

ESS Guest Computational Investigator

ABSTRACT

The recovery of a high resolution geopotential from satellite

gradiometer observations motivates the examination of high performance

computational techniques. The primary subject matter addresses specifically

the use of satellite gradiometer and GPS observations to form and invert the

normal matrix associated with a large degree and order geopotential solution.

Memory resident and out-of-core parallel linear algebra techniques along with

data parallel batch algorithms form the foundation of the least squares

application structure. A secondary topic includes the adoption of object

oriented programming techniques to enhance modularity and reusability of

code. Applications implementing the parallel and object oriented methods

successfully calculate the degree variance for a degree and order 110

geopotential solution on 32 processors of the Cmy T3E. The memory resident

gradiometer application exhibits an overall application performance of 5.4

Gflops, and the out-of-core linear solver exhibits an overall performance of

2.4 Gfiops. The combination solution derived from a sun synchronous

gradiometer orbit produce average geoid height variances of 17 millimeters.

1. Introduction

The recovery of a high resolution geopotential model from satellite

observations motivates the examination of high performance computational

techniques. The recently accepted Gravity Recovery and Climate Experiment

(GRACE) mission will soon provide direct observations of the gravity field

from an orbiting platform [NASA, 1997]. Previous studies demonstrate that

the rigorous, single point analyses as defmed in Section 1.1.2 produce the best

gravity field solutions [Bettadpur, 1993; Koop, 1993]. Computational cost

and memory limitations of serial computer architectures restrict the rigorous

analysis of gravity field models to approximately 100 kilometer resolution.

Next-generation data analysis techniques that resolve the high frequency

components of the gravity field must be developed in preparation of future

dedicated gravity missions [CIGAR, 1996]. This interdisciplinary research

consists of an investigation into the appropriate algorithmic design required to

recover high resolution geopotential coefficients using rigorous analysis

methods.

1.1 Global Gravity Field Determination

Accurate modeling of the global gravity field is of fundamental

importance due to the wide variety of geodynamic processes exhibited in the

1

gravity signal. Gravity field anomaliesprovide one of the few direct

manifestationsof interiorprocessessuchasmantleconvectionandlithosphere

motion. Temporalchangesin the gravity field indicatechangesin sealevel

and climate due to mass transport between the oceans,ice sheetsand

atmosphere[McNutt, 1990]. Oceanographyrequiresanaccurategeoidfor the

separationof mean circulation from the tidal and time-varying ocean

circulationeffects[Zlomicki, 1990]. The ability to measurethegravity field

from low orbit providesanexcellentopportunityto observetheseprocesseson

a global scale. A comprehensivesurvey of past events in gravity field

determinationon localandglobalscalesispresentedby Neremetal [1996].

1.1.1 Satellite Techniques

The development of global gravity field models relies heavily on the

satellite tracking measurements.

perturbs the satellite motion.

The non-uniform gravity field of the Earth

Range and range-rate observations to the

satellite record the first and second time integral of the gravity force. The

satellite tracking measurements are especially sensitive to the low frequency

signal in the gravity field as the time integral smoothes over much of the

gravity field's high frequency information. High precision observations

performed by satellite laser ranging (SLR) enable the recovery of Earth

orientation, temporalvariations in low frequencygravity field signalsand

allow confirmationof certainrelativistic effects [Tapley, 1993]. The Global

Positioning System (GPS) supplements conventional SLR tracking by

providingnear-continuouscoverageofthe Earthandlow orbitingsatellites.

Resolutionof the higher frequency components requires the use of

other measurement types. Satellite altimetry measures the local geoid height

over the oceans. Measurements made on the surface of the Earth measure local

accelerations. The high resolution measurements are complimentary to the

low resolution satellite tracking data types in the global gravity field solution.

The quality of altimetry observations from missions such as TOPEX/Poseidon

depends on the knowledge of the ocean topography, atmospheric refraction

and satellite trajectory [Nerem et al, 1996].

Measurements of the gravity gradient, or the spatial rate or change of

gravitational acceleration, also provide high resolution observations of the

gravity field. Two measurement types observe the gravity gradient. The

satellite gradiometer directly measures the gradient by differencing the

measurements of accelerometers mounted on a satellite platform. The

satellite-to-satellite tracking observable measures the integral of acceleration

differences by monitoring the inter-satellite range and range rate. Rummel

[1986] provides a discussion of both concepts.

3

Satellitegradiometryemployspairs of linearaccelerometersmounted

symmetricallyaboutthe satellitecenterof mass. Thegradientsignalremains

alter eliminatingcommonaccelerations.Two instrument concepts are being

investigated in preparation for a potential gradiometer mission. The NASA

GEOID mission will employ a cryogenic gradiometer to achieve high gradient

resolution [Paik, 1996]. The European Gravity and Ocean Circulation

Explorer (GOCE) is a European Space Agency (ESA) mission implementing

the GRADIO type instrument originally designed for the ARISTOTELES

gravity mission [Rummel, 1996].

Satellite gradiometry is more sensitive to the high frequency signal of

the geopotential than the satellite-to-satellite tracking method. A typical

gradiometer mission at an altitude of 200 kilometers will be capable of

resolving the gravity field to 50-100 km [Schrama, 1991]. Super-cooling

requirements and atmospheric drag effects at low altitudes limit the duration

of satellite gradiometer missions to less than one year. A gradiometer mission

would provide a snapshot in time of the global gravity field. The medium to

high resolution images are important to geodesist investigating solid earth

physics on long temporal scales and to oceanographers studying steady-state

ocean circulation patterns.

4

Satellite-to-satellitetracking techniquesrecover rangeor range rate

informationbetweentwo co-orbitingsatellitesseparatedby only a few degrees

of arc. The inter-satellitemeasurementsare time integralsof the gravity

gradientbetweenthesatellites. TheNASA GRACEmissionscheduledto fly

in 2001 employsa satellite-to-satellitemicrowavetrackingsystem[Davis et

al., 1996].

The satellite-to-satelliteobservationsarelesssensitiveto altitudethan

the gradiometerobservation.A higher altitude orbit allows mission lifespans

of 3 to 5 years. A satellite-to-satellite mission will produce a series of images

illustrating the time-varying nature of the gravity field. The examination of

dynamic processes such as the movement of the water mass between the

Earth, atmosphere and oceans may proceed from a new perspective.

1.1.2 Analysis Methods for Global Solutions

The global gravity field analysis computes the least squares estimate of

geopotential parameters given an observation data set. The spherical

harmonic series provides an accurate representation of the geopotential

function. As such, the harmonic coefficients comprise the set of estimated

parameters. Section 2.3 describes more fully the spherical harmonic model,

and section 3.2 addresses the least squares technique.

The distributionof observations over the surface of the Earth further

distinguishes the analysis approach. Single point computation methods

perform the most rigorous reduction of observational data. A point-wise

evaluation of the dynamic and observation models occurs along the satellite

trajectory according to arbitrary dynamic and observation models. The

analysis proceeds without the introduction of simplifications or assumptions.

The processing cost associated with the least squares techniques may restrict

the size of the single point analysis. The least squares technique requires the

formation of a large, dense linear system to calculate the parameter updates.

For the estimation of a large number of parameters, both the computational

cost and memory requirements may become prohibitive.

Grid computation methods exploit natural symmetries in the

mathematical model of the gravity field to greatly reduce computational costs.

Colombo [1981] demonstrated that the normal matrix reduces to a block

diagonal form by assuming an observation distribution which coincided with

the equiangular points on a sphere. The same normal matrix structure results

from data collected along a repeat ground track orbit with observations taken

at a regular sampling interval [Koop, 1993]. The analysis of real data requires

the preprocessing of irregularly sampled data taken along an imperfect repeat

6

orbit. The processof forming block averagesand normalpoints introduces

errorinto theestimate.

Grid computationmethods have been useful in performing error

analysis of proposed dedicated gravity missions. Many authors have

illustrated the necessity of combining satellite tracking data and gradiometer

observations to produce an unbiased estimate of the gravity field to high

degree and order [Schrama, 1991; Koop, 1993; Visser, 1994]. Additional

information is required (e.g., Kaula's rule of thumb) to recover a solution from

gradiometer missions located in a non-polar orbit.

1.2 Computational Challenges

The development of computational

satellite observations into useful

significant computational challenge.

methods capable of reducing

gravity field information constitutes a

The challenge arises from both the large

number of observations and the large number of unknown parameters.

Assuming five second sampling intervals, a six month GPS-tracked, satellite

gradiometer mission would produce over eight million combined gradient and

GPS observations [Schuh et al, 1996].

and order 180 possesses 32,761 terms.

A geopotential expansion to degree

The computer resources required to

compute the linear least squares estimate of the gravity coefficients from the

describedscenarioaresignificant. Over8 Gbytesof computermemory(64-bit

precisionfloats)arerequiredand approximately10quadrillion(1016)floating

point operationsmustbeperformed. Currentcutting-edgedistributedmemory

parallel architectureswhich executeat hundredsof Gflops requiredays of

executiontime to finish theproblem. Ultimately,therigorousanalysisof such

datanecessitatestheuseteraflopandpetaflopcomputerarchitectures.

Fortunately,the size of the gravity field model may be adjustedto

matchthe performancecapabilitiesof the availablearchitectures. The total

costof theproblemis drivenprimarily by thetimerequiredto accumulatethe

observationequationsinto thenormal matrix. The costof forming the dense

normal equations using rigorous methods is known to be mn 2 where m is the

number of observations and n is the number of geopotential parameters to be

estimated. Figure 1 presents the amount of wall clock time required to

accumulate one million observations into the normal matrix associated with a

given maximum degree and order gravity field expansion. The different

curves represent varying levels of computational performance. Figure 2

presents the amount of processor memory required to store the normal matrix

associated with a given maximum degree and order expansion.

8

1000

100

10

1

0.1

0

Procesing Time Required to Accumulate
One Million Observations

I
100 Gflop

_o ,.- "w"

_¢* .d

10 / °'''" -.- ""

Gflop ,, / .

/ • .

• " " " 1 Tflop
o'* /

/ * ae, B

60 120 180 240 300 360

Gravity Field Size (Degree)

Figure 1 Processing Time for Normal Equations Accumulation

Memory Required for Normal Matrix

1000

100

_ 10

_u

/
O.1

/

0.01 /

0 60

,s ""

120 180 240

GravityFleld Size(Degree)

300 360

Figure 2 Memory Requirements for Normal Equations

The design of high performance satellite applications must also

consider the implementation of the satellite dynamic models. The total work

required to model the physical system is insignificant when compared to the

total cost of the least squares operations. However, once the linear algebra

operationshave been effectively optimized for performanceon a parallel

computer,thephysicalmodelcostdominatesthewall-clock executiontime of

the application. An effective applicationmust addressthe optimization of

satellitepropagationoperationsaswell.

1.3 High Performance Computing

Parallel processing provides a practical solution to the computational

cost difficulties associated with the gravity field problem. Computer industry

projections predict that advances in current technology will lead to only a

doubling or tripling of performance improvement in single processor

technology [Astfalk, 1993]. Only the aggregate power of many processors

executing concurrently will provide the performance required to solve the

gravity field problem.

1.3.1 Amdahl's Law

Amdahl's Law [Amdahl, 1967] defined the early years of parallel

computing. The hypothesis states that the maximum speed-up of a parallel

algorithm is bound by the reciprocal of the time required to execute any serial

region within the algorithm regardless of the number of processors (See Figure

3). By this measure, significant performance increases would depend on the

elimination of serial regions of execution. Since many program activities and

10

certainalgorithmsareserialin nature(e.g.,numericalintegration),thebenefits

of parallelprocessingwerethoughtto beminimal.

A revolutionin parallelprocessingtheoryoccurredafter Gustafsonet

al [1988] exposedan implicit assumptionin Amdahl's original statement.

Amdahl assumesthat the problem size remainedconstantas the parallel

region is distributedacrossan increasingnumberof processors.In practice,

however, the problem size generallyexpandsto the capacityof available

memory. A reformulatedrelationshipincludesthescalingof theproblemsize

with the numberprocessors. The scaledAmdahl's Law demonstratesthat

scalablealgorithms,or algorithmswhichmaintainefficiencyasthenumberof

processorsincrease,couldbedeveloped(SeeFigure3).

11

Allow P to be the number of processors allocated to solve the problem.

Amdahl's Law

Allow s to be the time spent by a serial processor executing the serial region

and p to be the time spent by a serial processor executing the parallel region.

The speed-up (defined as the serial time divided by the parallel time) as given

by Amdahl's Law is,

S(P) = s +_.____p (1)

s+ p
P

which simplifies to the form,

P
S(P) = (2)

s(P- 1)+ 1

As the number of processors approaches infinity, the speed-up is bounded

1
by-.

S

Scaled Amdahl's Law

Allow s' to be the time spent by a parallel processor executing the serial

region and p' to be the time spent by a parallel processor executing the parallel

region. The speed-up as given by Scaled Amdahl's Law is,

s' + Pp'
s(P) = (3)

s' +p'

which simplifies to the form,

S(P) = s' + P(1 - s') (4)

The upper bound of the speed-up is now a function of the number of

processors. For a perfectly parallel problem (s' equal to zero), the speed-up is

equal to the number of processors.

Figure 3 Derivation of Amdahl's and Sealed Amdahl's Laws

12

1.3.2 Algorithmic Models

A new algorithmic model is required when moving from serial to

parallel computing. Serial programs are designed according to the random-

access memory (RAM) model which consists of a central processing unit and

an attached memory. The term random-access refers to the ability to retrieve

data elements from memory in an arbitrary order. The RAM model is not

suitable for parallel algorithms since issues such as computational concurrency

and interprocessor communication are not addressed [Jfi Jfi, 1992].

The development of a parallel model begins with the categorization of

parallel architectures. A common method is to define architectures according

to the number of instruction streams and data streams present in the model.

The single instruction/single data (SISD) class issues a single sequence of

instructions which operate on a single stream of data. The single

instruction/multiple data (SIMD) class issues the identical sequence of

instructions to multiple processors each of which operates on different streams

of data. The multiple instruction/single data (MISD) class issues different

sequences of instructions to multiple processors each of which must operate

on the identical stream of data. The multiple instruction/multiple data

(MIMD) class issues different sequences of instructions to multiple processors

each of which operates on different streams of data. The SISD class

13

correspondsto the RAM programmingmodel describedpreviously. SIMD

architecturesexperienceda wave of popularity in the late 1980's and early

1990's,and the SIMD style of programmingis still prevalent. The major

hardwarevendors,however,have moved away from SIMD and currently

producearchitectureswhich support the more powerful MIMD processing

style.

Two communication models have evolved to support the movement of

data between processors in a parallel environment. The shared memory model

views the architecture as a collection of processors which share access to a

global memory unit. An equal algorithmic cost is assigned to the retrieval of a

data element located in any position of global memory. The message passing

model views the architecture as a collection of processors each of which

possesses a local memory unit. Data movement between processors occurs in

the form of messages. The message is initiated by a send operation on the

source processor and completed by a receive operation on the destination

processor. The algorithmic cost of the communication depends on the amount

of data communicated and the distance between the source and destination

processors.

14

1.3.3Hardware

The computationalperformanceof any algorithmultimately depends

on thehardwarearchitecture.Theprimary hardwarecomponentwhich effects

performanceis thecentralprocessingunit (CPU). Two fundamentaltypesof

CPUsexist. Scalarprocessorsperforma singleoperationat a time. Vector

processorsarefine grainedparallelunitswhich pipelinethe stagesof floating

point computations. High performancerequires the formulation of the

algorithmin termsof thedataaccesspatternsbestsuitedfor eachprocessor.

Thepipeliningpropertyof vectorprocessorsrequireslong contiguousvectors

of data. The scalarprocessorsrely on additionalhardwaremechanismsto

insurethefastavailabilityof databeforethestartof theactualcomputation.

A secondmajorhardwarecomponentis RAM memory. Two typesof

memoryorganizationexist. Sharedmemoryarchitecturessharea common

memoryunit andguaranteeequalaccesstime betweenanyprocessorandany

memorylocation. Distributedmemoryarchitecturesallocatedifferentphysical

memoryunits to eachof theprocessors.Accessto aprocessor'slocalmemory

is analogousto conventionalsingleprocessorarchitectures.Remotememory

units areaccessedthroughnetwork communications at a substantially higher

cost.

15

Sharedmemory,vectorprocessorarchitecturesreflect the stateof the

art in conventionalsupercomputing.Computerssuchasthe CrayY-MP and

Cray T90 have a long record of reliability and superior performance.

However, the shared memory computer suffers from an inherent lack of

scalability due to the equal cost restriction on memory access [Astfalk, 1993].

As a result, the shared memory architectures will not achieve the level of

performance required for next generation, gravity field applications.

Distributed memory, scalar processor architectures reflect the next generation

in supercomputing. Scalable demonstration architectures such as the Cray

T3D and Intel iPSC/2 lead to the development of teraflop production systems

such as the Cray T3E and Intel Paragon.

1.3.4 Software

Given the wide variety of parallel systems, software should be

developed in a portable and maintainable manner. Portability refers to the

ability to execute the same high level algorithm on any machine without code

modifications. Maintainability refers to the ease with which the software may

be modified and enhanced. In some respects, maintainability is a measure of

the complexity of the code in terms of number of lines, readability, etc. The

discussion of portability leads to an interesting paradox. As mentioned

16

previously,thealgorithmmustmatchthehardware to guarantee performance.

However, portability requires that no architecture specific language appear in

the algorithm. These two seemingly mutual exclusive items are reconciled in

the advanced programming concepts of standardized libraries and object

oriented programming.

1.3.4.1 Standardized Libraries

A standardized library establishes an interface to a set of well-defined

computational primitives. Architecture dependent parameters are purposely

omitted from the interface to facilitate implementation of the library on a

variety of different architectures. The standard provides numerous

advantages to application developers and hardware vendors. Applications

which are designed around standards can be assured of executing efficiently

on any platform which supports the standard. Hardware vendors may

implement the standard in such a way to exploit the performance characteristic

of their machine. The gravity field problem benefits from two specific

standards.

The Basic Linear Algebra Subprograms (BLAS) provide single

processor implementations of dense linear algebra operations. The original set

of subroutine calls described by Hanson [1972] proved insufficient to fully

exploit the performance capabilities of different architecture types. Higher

17

level operationscapableof encapsulatingarchitecturespecific performance

characteristicshavebeenestablished[Dongarra,1988]and will be presented

in later chapters. For architectureson which these routines have been

optimized for performance, the BLAS comprise the components of highly

effective libraries and applications. FORTRAN source code is available for

architectures which do not posses optimized BLAS calls. The software

libraries EISPACK, LINPACK and LAPACK are examples of serial libraries

built upon the BLAS [Dongarra, 1992].

The Message Passing Interface (MPI) library establishes a standard to

facilitate portability for message passing parallel applications [Snir et al,

1996]. MPI provides a common set of communication routines upon which

higher level routines and libraries may be layered. While a relatively new

standard, virtually all major distributed architectures support an MPI

implementation. In addition, a generic MPI implementation is available

[Gropp, 1996].

1.3.4.2 Object Oriented Programming

The object oriented programming (OOP) style establishes a framework

within which highly useable and maintainable software may be developed.

Application development centers around the manipulation of language

abstractions called objects. The objects are programming language constructs

18

which representthemathematicalor physical components of the problem.

distinguishing

complexity is

A

characteristic of OOP is the degree to which program

hidden from the programmer. The data and algorithms

associated with the object's functionality are hidden, or encapsulated, within a

single, modular construct. Interactions between the object and an application

program are restricted to well-defmed, user interface routines, or methods,

which reflect the natural functionality of the modeled system component.

OOP provides several significant advantages over conventional

structured programming techniques. Subroutines in large and complex

applications usually require long call sequences and/or many global variables

to pass the necessary input and output data. The organization of the data into

objects reduces the number of call sequence parameters and the dependency

on global variables. The resulting code is more readable and easier to

maintain. Also, since objects are specifically designed according to the

definition of system components, the code more closely resemble the natural

expression of the algorithm. The encapsulation of data and functionality

creates a modularity which isolates higher level algorithms from programming

errors and changes in object implementation. The modularity is also ideally

suited for incorporation into software libraries. The programming flexibility

19

providedby sucha librarypermitstherapiddevelopmentof newanddifferent

applications.

Theimplementationof OOPusinga structuredprogramminglanguage

suchas C or FORTRAN requiresself-disciplinein the useof conventional

programmingconstructs. Data structurescontain the object's data while

subroutinesprovidetheobject's functionality. However,protectionof hidden

object components from direct access by high level routine cannot be enforced

by the compiler as is the case in object oriented languages such as C++ and

SmallTalk. In general, any access of object components in a manner other

than specified by the object methods will lead to unpredictable results.

The development of an Object Oriented Precision Orbit Determination

(OOPOD) library begins with the establishment of two general types of

objects, or classes. The physical class abstracts in a generic manner the

physical entities which comprise the satellite environment. The properties of a

physical class object are completely specified by a user-supplied description of

the modeled object and its environment. For example, the properties of a

satellite object correspond to the physical characteristics of the satellite (mass,

dimensions, moments of inertia, etc.) and the forces acting on the satellite

(Earth gravity, drag, moon, etc.). The mathematical class abstracts in a

generic manner the mathematical techniques used to manipulate data derived

20

from thephysicalsystem.Mathematicalclasspropertiesarepartially specified

by a user-supplieddescriptionof the mathematicaltechnique. Additional

informationmust be extractedfrom associatedphysical objectsto complete

the mathematicalobject description. For example, the properties of a

multistep numerical integration routines include the characteristicssolely

associatedwith the integrator(startingconvergencecriteria,grid size,orderof

integration method,etc.) and data extracted from the "to be propagated"

satellite object (dimensionof integrationvector, initial state,equationsof

motionderivedfrom list of forces,etc.)

The existence of OOPOD library

developmentof applicationcode. Given a

objects permits the rapid

conceptualdescription of a

precisionorbit determinationproblem,the developmentof the corresponding

OOPOD application consists of four steps.

1.Model the physical entities in the problem by creating physical class

objects using the appropriate physical object creation methods

according to the desired model parameters.

2.Initialize the mathematical techniques by creating mathematical class

objects using the appropriate mathematical object creation methods

according to desired object functionality.

21

3.Fully realize the mathematicalclass objects through associations

with physical objects using the appropriatemathematicalobject

realizationmethods.

4.Specify the POD algorithm in terms of the physical and

mathematicalobject methods according to desired application

functionality.

Chapter2andChapter3 describethephysicalandmathematicalobject

in conjunctionwith thedescriptionof applicationcomponents.Prototypesof

the object methodsuse standardC syntax. A complete list of all object

methodsasproposedby thisresearchin providedin AppendixC.

1.3.5Parallel Linear Algebra

A parallel linear algebra library must fulfill a

expectations.

interprocessor

performance.

significant list of

A library implementation must include the necessary

communication without sacrificing portability and high

The library must also possess a flexible interface which can

support a wide variety of applications which distribute data in very different

ways. Two groups contributing significantly to the development of parallel

linear algebra libraries are the ScaLAPACK project and the PLAPACK

project.

22

TheScaLAPACKprojectis acombinedeffort betweentheUniversity

of TennesseeComputer Science Department and Oak Ridge National

Laboratory [Dongarra,1997].

library built upon the BLAS.

The ScaLAPACK packageis a FORTRAN

Matrix elements are distributed over the

processors in a block-cyclic manner. Communication between processors

occurs via the Basic Linear Algebra Communication Subprograms (BLACS),

a proposed communication standard developed specifically for the

ScaLAPACK library. The ScaLA.PACK project began in 1989.

The PLAPACK project originates from the University of Texas at

Austin [van de Geijn, 1997]. The PLAPACK package is a C library built

upon the BLAS. Matrix elements are distributed over the processor array

according to the principle of Physically Based Matrix Distribution (PBMD)

[Edwards, 1995]. PBMD permits the abstraction of different data

distributions which are naturally related by collective communication

operations. The PLAPACK project began in 1996.

1.3. 5.1 Parallel Out-of-Core Processing

The speed of parallel computers permit the solution of problem sizes

which exceed the capacity of available memory. As a result, interest in

parallel out-of-core (OOC) processing techniques has increased. Many out-of-

core dense linear solvers have been developed [Klimkowski, 1995], and

23

parallellinearalgebralibrarydevelopersarebeginningto advertiseout-of-core

functionalityaspartof theirpackages[Dongarra,1997].

Out-of-corelinear algebraimplementationsmay be differentiatedby

the shapeof the submatrixbroughtinto memoryfor processing. Slab-based

algorithmsdecomposethematrix one-dimensionallyand bring an entirerow

or column panel into memory. While beneficial for pivoting operationsin

non-symmetricdensesolvers,theslab-basedapproachpossessesa greaterI/O

overheadfor large problem sizes. Block-basedalgorithmsdecomposethe

matrix two-dimensionallyand readapproximatelysquarematrix blocks into

memoryfor processing.While hindering pivoting operations, the block based

algorithms minimizes the I/O to computation ratio for large problems.

Another consideration is the amount of the data to read into memory at

a given time. Conventional approaches to OOC functionality emphasize the

communication of data from disk to memory concurrent with computational

activity. This overlapping of communication and computation hides much of

the I/O traffic. However, an additional level of complexity is added to the

program due to double buffering operations. Overlapping communication also

requires memory to be allocated to I/O operations instead of computations

which leads to deteriorated algorithmic performance. Klimkowski [1995]

demonstrated a linear solver which allocated a significant portion of memory

24

jto computationalactivity and exposedmuchof the I/O. Performanceresults

demonstratedtheI/O costin sucha schemeto be approximately10to 20% of

thetotalcomputationalcost.

1.4 Related Interdisciplinary Work

This work builds directly upon the dissertation research of Dr. Srinivas

Bettadpur at the University of Texas at Austin. Dr. Bettadpur examines the

implementation of a high performance satellite gradiometer application on

shared-memory vector processor. The fine grained nature of the vector

processors permit the investigation of high performance spherical harmonic

synthesis algorithms and least squares estimation techniques. The research

results demonstrate a 97.8% efficiency for memory resident applications and a

89.6% efficiency for out-of-core applications executed on an 8 processor Cray

Y-MP.

The propagation of satellite trajectories is perhaps the most common

component among all satellite applications. The parallelism of the trajectory

propagation process may be the most difficult as well due to the fine

granularity of the computations. Two groups published results from

applications which implement parallel propagation techniques. The Naval

Research Laboratory exploits parallel computing to enhance capabilities of

25

correlating observationswith objects in the SpaceCommanddatabaseof

orbiting objects [Coffey, 1996]. A brute force approach computes the

Lambert solution of every uncorrelated pair of observations in the search for

orbits which correspond to previously known objects or which match other

uncorrelated observation to within some user-specified criteria. A master

processor distributes uncorrelated pairs of observations to slave processors

which perform the computations. Results on the IBM SP2 located at the Maui

High Performance Computing Center (MHPCC) demonstrate satisfactory

results both in the number of recovered orbits and in the efficiency of the

method through 128 processors.

Draper Labs uses parallel computing to search for stable configurations

for large satellite constellations [Wallace, 1995]. Populations of constellation

configurations are evaluated using genetic algorithms. A master-slave

algorithm distributes the work of both the analytic trajectory propagation and

the genetic algorithm cost evaluation. Results on a heterogeneous workstation

network at Draper Labs demonstrate good efficiency over a small number of

processors.

The above projects possess similar advantages and disadvantages. The

master-slave paradigm inherently performs dynamic load balancing to keep all

the processors active. However, the method is not scalable to a large number

26

of processorsdue to the communication requirements between each slave

processor and the master. Also, the problem size of the individual tasks are

limited by the performance capabilities of the individual processors. The

master-slave paradigm is useful in the distribution of many small tasks to a

moderate number of processors, but the method becomes ineffective for large

problem sizes or large number of processors.

The Jet Propulsion Laboratory (JPL) performed research similar to this

work by completing the determination of a Venus gravity field complete to

degree and order 90 on the 256-processor Cray T3D [Konopliv, 1995]. Data

from the Magellan and Pioneer Venus Orbiter missions was processed using a

modified version of JPL's Orbit Determination Program (ODP). The global

processor array was partitioned into groups with each group responsible for

observation equation generation and estimation of sub-arc parameters.

Information relevant to global parameters was accumulated using Given's

rotations into a information matrix wrapped by rows across a one-dimensional

mapping of the global processor array. Parallel accumulation was

accomplished by pipelining the communication of single observation arrays

along the one-dimensional mapping. Performance results demonstrated a two

order of magnitude speed-up over serial processing techniques although

27

absoluteperformancefigures were not presented nor could be calculated from

the available information.

The European Space Agency (ESA) through the work of the

Consortium for the Investigation of Gravity Anomaly Recovery (CIGAR)

recognizes the processing difficulties associated with the gravity field

problem, but suggest an alternative approach to overcoming the computational

difficulties. The group postulates that future computational capabilities will

be insufficient to formulate a set of normal equations for the expected problem

sizes [Schuh, 1996]. A preconditioned conjugate gradient (CG) method

would avoid the explicit formation of normal equations by operating directly

on the linear system of observation equations (e.g., y =/-/x). This method

can perform the single point computations required for a rigorous analysis of

data. Results demonstrate the successful recovery of geopotential information

to degree and order 50 on serial processors from simulated combination

gradiometer and GPS observables.

The ability to perform single point computations and reduced memory

cost justify further study of the CG method. However, certain difficulties may

preclude use of this approach. The CG method is a iterative method which

requires

iteration.

the generation of the full set of observation equations on each

The cost of forming the observation equations is significant for the

28

numberof observationsexpectedfrom the dedicatedgravity missions. Also,

covadanceinformationwhich providesan importantmeasureof the formal

varianceof theestimatemaynotbeeasilyextractedfromthis method.

1. 5 Research Goals and Contributions

The development of proof-of-concept sof_vare tools capable of

analyzing satellite gradiometer data motivates this research. Conventional

analysis tools are implemented on serial architectures but suffer the processing

cost and memory restrictions described previously. New software tools

designed to exploit high performance distributed memory parallel

architectures will permit rigorous gravity field analyses. The rigorous single

point computation methods are necessary to recover the most accurate gravity

field solution.

This research seeks the following goals:

1.The understanding of the implementation techniques required to

develop high performance satellite applications on scalar

architectures.

2.The understanding of the implementation techniques required to

develop high performance satellite applications on distributed

memory architectures.

29

3.The understandingof the implementationtechniquesrequired to

develophigh performance OOC satellite algorithms on distributed

memory architectures.

4.The production of a gradiometer application capable of performing

covariance error analyses for high resolution gravity fields.

5.The verification of computational techniques by performing an error

analysis of combination gradiometer and GPS data.

The contributions of this research reflect the interdisciplinary nature of

the investigation. The integration of high performance computational

techniques into a satellite application requires an understanding of

computational performance issues and their impact on traditional satellite

algorithms. The satellite application produced by this research implements

distributed memory parallel accumulation and linear system solve algorithms

which effectively addresses all performance issues from single processor

execution to out-of-core methods. This work presents an effective

implementation of data parallel concurrency in the numerical integration of

satellite trajectories and generation of gravity field observation equations. A

generalized object oriented framework for satellite applications encapsulates

the software complexity and permits the expression of satellite algorithms in a

natural manner.

30

Separatework in the individual disciplines of computational science

and satellite geodesy complements the interdisciplinary contributions. The

development of PLAPACK Virtual Object functionality as implemented by

this research yields a generalized out-of-core library for dense linear algebra.

Covariance error analyses for combination gravity field solutions conducted

by rigorous methods verify previous studies using grid methods.

1.6 Solution Metrics

1.6.1 Speed-Up and Efficiency

The performance of the parallel application is measured in terms of

speed-up and efficiency. Speed-up quantifies the gain in processing speed of a

parallel application relative to a serial application that performs the same

function. Formally, speed-up is defined as the wall-clock time required to

complete the serial application divided by the serial wall-clock time required

to complete the parallel application. The parameter n specifies the problem

size, and the parameterp specifies the number of processors.

T_.,_#a (n, P) (5)

31

Efficiency quantifiesthe effectiveuseof processorresourcesrelative

to theserialalgorithm. Formally,efficiencyis definedasthespeed-updivided

by thenumberof processors.

E(n, p) = S(n, p)
P

As problem sizes grow large, limits on computational resources

prohibit the use of serial applications as benchmarks for parallel applications.

In these cases, speed-up and efficiency are often reported in terms of

operations per second. The wall-clock time for the parallel application is

measured and divided by the operation count of the algorithm to yield the

aggregate processing speed. The per processor processing speed is recovered

by dividing the aggregate processing speed by the number of processors. The

application performance is compared against the peak speed of the processor

to provide speed-up and efficiency information.

1.6.2 Error Degree Variance and Degree RMS

The variances recovered from the inverted normal matrix for gravity

field solutions are commonly reported in terms of degree variances. The error

degree variance presented in Equation (7) is expressed in terms of the sum of

coefficient variances corresponding to degree l.

(6)

32

I
2

ra= l

The error degree variance is divided by the number of coefficients at

degree l to yield the error degree-order variance as presented in Equation (8).

(7)

2

2l+1

The square root of the error degree-order variance yields the error

RMS per coefficient per degree.

(8)

1.6.3 Geoid Height Error

Brun's formula specifies the difference in geoid heights between two

geopotential fields at a certain location on the surface of the Earth [Vanicek,

1986]. The parameter Y0 represents the normal gravity on the reference

ellipsoid, and _band _. represent the latitude and longitude of the subsurface

point on the Earth.

2/0

Equation (9) may be expressed in terms of the geopotential coefficient

differences AC_, and AS_,.

(9)

/max 1 l

/O " I=0 m=0\ r ,/

33

cosmg + sinre,z] (I0)

On the surface of the Earth, r = a, and Y0-- _ Equation (10)2 "
a e

reduces to a simpler form.

/m_ 1

Ah(_t,A) = a,E E ff_ (sin _)[AC _ cosmA + AS_ sin m2]
I=0 m=0

To derive the expression for the variance in geoid height in terms of

the coefficient covariance, define a_ and fl_ as in Equation (12).

(11)

a_,_ = a,fftm (sin _)cos m,_

fljm = aePtm (sin ¢)sin m2

The difference in geoid heights and the square of the difference may be

expressed in terms of a dot product between the parameters at, _ and ,81m and

the geopotential coefficient differences ACt., and AS_.

(12)

IAh(q_,A)=[a fl AS =Ar&c
(13)

Ah2 (#,2) = (Ar_xXAr_c) r

= A r 8x_a: rA

The variance of the geoid height is determined by applying the

expectation operator to Equation (14). The matrix P specifies the covariance

matrix associated with the estimate of the geopotential coefficients.

(14)

34

- A' A

(15)

(16)

The remainder of this document presents a detailed description of the

mathematical and computational methods used in this research. Chapter 2

presents the relationships describing the dynamical models and physical

objects. Chapter 3 presents the mathematical and computational techniques

required to manipulate and recover model parameters. Chapter 4 focuses on

the parallel methods as applied to the least squares problem and the

observation generation process. Chapter 5 documents the design of the

parallel analysis software. Chapter 6 describes the error analysis for the

satellite gradiometer mission scenarios. Finally, Chapter 7 discusses the

conclusions and recommendations of this research.

35

2. Simulation Environment

Simulation of the environment traversed by satellites in low Earth orbit

presents a complicated and challenging task. The system is inherently non-

deterministic due to the countless numbers of perturbing forces and the effects

of processes best described in a stochastic manner. Even so, the problem is

tractable if the researcher permits a statistically quantified and measurable

level of error in the analysis. The resulting physical model can provide insight

into the reactions and interactions of an actual satellite orbiting the Earth.

The comprehensive modeling of the physical environment is beyond

the scope of this research; however, a certain degree of complexity in the

physical model validates the new computational techniques. This research

asserts that demonstration of single point processing capabilities satisfy

complexity requirements. Single point processing assumes nothing about

spatial or temporal symmetries within the environment. Satellite states are

determined according to the numerical integration of arbitrarily complex

dynamic models. Observation models also implement arbitrarily complex

expressions. The use of sophisticated models as required for the processing of

real data would require no modifications in the processing methodology.

36

The physical model adoptedby this researchconsistsof a non-

spherical gravity field attached to a non-uniformly rotating Earth. The body-

fixed flame is determined in part by the stochastic processes of non-uniform

rotation and polar motion which must be evaluated from the interpolation of

tabular values (see Appendix A). The GPS and gradiometer satellites orbit the

Earth and collect observations according to the point-wise calculations of the

gravity.

2.1 Physical Objects

Physical objects abstract in a generic manner the physical entities

which comprise the satellite environment. Regardless of the degree of

specialization, each physical object shares a common set of properties which

specify the functionality of the object within the simulated environment. The

observable property specifies whether the object may be treated as an

observable quantity in the estimation of model parameters. The dynamic

property specifies whether the object's state must be determined by numerical

integration methods. The force property specifies whether the object

influences the motion of an orbiting body. Property values are set at creation

and may be accessed by the inquiry methods provided in Appendix C.

37

All physical objects axe created and fully realized via a single call to

the object's creation method. In the following discussion of physical entities,

the associated physical classes and a sampling of object methods will be

described. A complete list of all object methods as proposed by this research

is provided in Appendix C.

2.2 Reference Frames and Coordinate Transformations

The development of mathematical equations to describe the

relationship between physical objects requires the establishment of appropriate

coordinate systems. The equations of motion for a dynamical body axe

defined within an inertial coordinate system. An approximation of an inertial

reference system is the celestial reference frame (CRF). The CRF is a spatial

coordinate system realized by a catalogue of extra-galactic radio sources

which show no proper motion [Bock, 1996]. A second reference system is

used to specify the positions and velocities of objects located on or near the

surface of the Earth. The terrestrial reference frame (TRF) is realized by a

catalogue of station positions located on the surface of the Earth. The station

locations form a time-varying polynomial. The configuration of the

polynomial at the chosen epoch defines the instantaneous TRF. The TRF will

be referred to in this work as the geocentric coordinate system.

38

The conversion between the CRF and the TRF is accomplished

through a series of plane rotations accountingfor the effects of general

precession,nutation,time-varyingrotation and polar motion. Deformation

effectsof the Earthareneglectedin this study.

processis presentedin AppendixA.

A summary of the rotation

Other reference systems commonly referenced are the topographic

(ENU) system, the radial, transverse, normal (RTN) system, and the

gradiometer system. The topographic system is defined on the surface of the

Earth at longitude _, and latitude d_. The coordinate axes point in the direction

of increasing longitude (East), increasing latitude (North) and increasing

altitude (Up). The RTN system is defined at the center of mass of a satellite in

orbit. The coordinate axes point along the instantaneous radius vector, in the

plane of the orbit orthogonal to the radius vector and normal to the orbit plane.

The gradiometer system is defined by the orientation of the gradiometer with

respect to the satellite. The gradiometer system is offset from the satellite

frame by constant Euler angles _, 0 and _.

The coordinate transformation operation is a fundamental component

for satellite application sottware. Two objects provide the functionality of the

operation. The first object encapsulates the table look-up process required for

39

the Earth orientation parameters. The second object encapsulates the creation

of matrix rotations required for the transformation of state vectors.

(char* filename,
tnt32 file_format,
EopTable * table);

(EopTable * table);

The EopTable object contains the tabular information necessary to

determine the polar motion and sidereal time at a given epoch. The creation

method reads the parameters from the specified file filename with specified

format file_format.

I int32 EopTable_calculate
(EopTable table,

float64 epoch);

The EopTable_ealculate method performs the table look-up and caches

the results within the object for future use. The data is retrieved via calls to

the inquiry methods listed in Appendix C.

rint32 RefFrame_create

int32 RefFrame_free

(char * filename,
lnt32 file_format,
RefFrame * frame);

(RefFrame * frame);

The RefFrame object contains the information and algorithms necessary

to generate the rotation matrices required to transform position and velocity

40

vectors between the geocentric, true-of-date, mean-of-date, and J2000

coordinate systems. The creation routine internally creates an EopTable

according to the specified file filename with specified format file_format.

int32 RefFrame_calculate (int32 set_tod,
float64 epoch,
RefFrame frame);

The RefFrame__ealculate method calculates the Earth orientation

parameters and rotation matrices for the specified epoch and caches the results

within the object for future use. If set__tod is set to SET_TOD, the specific

epoch will be considered the true-of-date epoch and the precession and

nutation parameters will be calculated for the epoch. If set_rod is set to

NO SET_TOD, only the parameters associated with Earth orientation will be

calculated. The data is retrieved via calls to the inquiry methods listed below

and in Appendix C.

int32 RefFrame_J2000_to_meanofdate (RefFrame
float64 *

lnt32 RefFrame_meanofdate to trueofdate (RefFrame
float64 *

lnt32 RefFrame_trueofdate_to_.geocentrlc (RefFrame
float64 *
float64 *

frame,
a);
_ame,
a);

fram_

b);

The above RefFrame methods return rotation matrices between the

J2000 inertial system, the mean-of-date coordinate system and the true-of-date

41

coordinatesystem.

column-majororder.

The rotation matricesare placedin a and b indexed in

int32 RefFrame_geocentric_to_topographic (float64
float64
float64
float64 *

int32 RefFrame_geocentric__to_rtn (float64 *
float64 *
float64 *

radius,
lambda,
phi,
a);

pos,
vel,
a);

The above RefFrame methods return rotation matrices based on the

geocentric position. RefFrame__geoceutrie._to_topographic creates the rotation

matrix from the current geocentric position expressed in spherical coordinates

to the topographic position defined by the spherical coordinates.

RefFrame__geocentric__to__rtn creates the rotation matrix from the current position

and velocity vectors defined in geocentric coordinates into the radial,

transverse, normal coordinates. The rotation matrices are placed in a indexed

in column-major order.

42

in_2 RefFrame_general

int32 RefFrame_cartesian_to_spherical

int32 RefFr ame_spherical_to_cartesian

(float64 psi,
float64 theta,
float64 phi,
float64 * a);

(float64 * x,
float64 * radius,
float64 * lambda,
float64 * phi);

(float64 radius,
float64 iambda,
float64 phi,
float64 * x);

The above RefFrame methods facilitate common coordinate

conversions. RefFrame_general creates a general rotation matrix based on Euler

angles. The rotation matrix is placed in a indexed in column-major order.

RefFrame_cartesian__to_spherical and RefFrame_.spherical to cartesian perform the

conversion between spherical and cartesian coordinate systems.

int32 RefFrame_merge (lnt32 side,

lnt32 trans,
float64 * a,
float64 * b);

The RefFrame._merge method merges the two rotation matrices a and b

into a single rotation matrix overwriting a. The valid values of side are LEFT

and RIGHT. The valid values of traus axe TRANS and NO_TRANS. Table 1

presents a summary of operations performed by RefFrame merge.

43

Side

LEFT

Trans

NO_TRANS

Operation

a_--ba

LEFT TRANS a _-- bra

RIGHT NO_TRANS a _-- ab

RIGHT TRANS a <-- ab T

Table 1 Summary of Operations for RefFrame_merge

int32 RefFrame_vector

int32 RefFrame_tensor

int32 RefFrame_vector_partials

int32 RefFrame_tensor_partials

(int32 trans,

float64 * a,
float64 * x);

(int32 trans,

float64 * a,

float64 * g);

(int32 trans,

float64 * a,

float64 * xp,
int32 length);

(int32 trans,
float64 * a,

float64 * gp,
int32 length);

The above RefFrame methods perform the coordinate transformation of

vector • or tensor g. The valid values of trans are TRANS and NO_TRANS.

RefFrame_veetor_.partials and RefFrame_tensor_parttals permit the transformation

of the partial derivatives associated with the vector or tensor quantity. The

number of partial derivatives is specified by length. Table 2 and Table 3

present a summary of operations performed by the above member functions.

44

The partials are assumed packed in a contiguous array according to the

ordering given in the tables.

Trans

NO_TRANS

TRANS

Operation

x _-- Ax

,v3c
_ Am,all i

8ct, &z_

x <---Arx

Storage

x_[x0 x, x_]

x [x0 x,

Table 2 Summary of Operations for RefFramevector and

RefFrame_vector partials

Trans

NO TRANS

TRANS

Operations

g *-- AgA r

8g <---A CggA r, all i
c?ai cga_

g _- ArgA

-----_-.-Ar _--_---A,all i
_, &zi

Storage

g e[g0.0 gt.o g2.o gu g2.1 g2.2]

_______[._.0,_, _,.0_ #g2,0_ _,.,_ #g2,,ea _'21

#a c_a #a #a

Table 3 Summary of Operations for ReJFrame_tensor and

R efFrame_tensor_.partials

45

The following example illustrates the use of the coordinate

transformation routines. • is a position vector expressed in the RTN

coordinate system at epoch t. The following code fragment demonstrates how

the vector would be converted to the true of date coordinate system.

float64 x[3l, aI9l, b[9l;

RefFrame frame = NULL;

RefFrame_create ("EOP', CSR_EOP_FORMAT, & frame);

/*

user code

*/

RefFrame_calculate (NO_SET_TOD, t, frame);

RefFrame_trueofdate_to_geocentric (frame, a, b,);

RefFrame_geocentric_to_rtn (pos, vel, b);

RefFrame_merge (RIGHT, NO_TRANS, a, b);

RefFrame_vector (TRANS, a, •);

2.3 Geopotential

Many mathematical representations of the geopotential have been

suggested and the associated algorithms were investigated by Bettadpur

[1993] in the context of high performance vector processors. The linear

access patterns required for base function evaluations and series summations

do not lend themselves to high performance on scalar microprocessors.

However, the ,9(/2) computational cost where l is the maximum degree and

order of the geopotential expansion comprises only lower order terms in the

46

overall cost formulation of the gravity field problem. No single processor

optimization of the spherical harmonic synthesis will be examined, and the

traditional spherical harmonic expression of the geopotential expressed in

Equation (17) will be used.

ao 1 f -,1

U(r'A'_)=_t_=o_=o(a")r 7 P_ "(sin#)[_" c°s2"+SI"sin2"]' ' '

The gravity field is fixed to the rotating Earth. The evaluation of the

potential and its first and second partial derivatives occurs within the

geocentric reference frame as expressed in spherical coordinates. Perturbing

force and gradient operations require the

directional derivatives in the cartesian frame.

expression of the potential

An effective conversion from

the spherical coordinates to the topographic system is described by Bettadpur

[1992]. The implementation of the conversion using BLAS operations is

presented in Appendix B.

2.3.1 Legendre Associated Functions

The Legendre associated base functions must be evaluated before the

summation of the spherical harmonic series. The Legendre associated

functions and their derivatives are computed in terms of first and second order

linear recursions. Lundberg [1986] recommends two eomputationally stable

(17)

47

algorithmsfor computingthe Legendreassociatedfunctionsto high degree

and order. The first calculatescolumn orderedrecursionsalong increasing

degree.Thesecondcalculatesrow orderedrecursionsalongincreasingorder.

The column orderedvariant was selectedsincethe column major ordering

correspondsto orderingof matrix elementsin FORTRAN. The recursion

formulas arepresentedin Equation(18) and Equation (19) where1 and m

represent the degree and order of the function element.

Al'l = :2- _os-I

-2,÷_,,=&gi-;3

4l - 1at,m = l 2 _ m 2

Bz,,_ -[(2l+1_(l-1)2-m2? 1

Fl,m = I_(l- mX l + m + l)

(18)

48

(19)

int32 Legendre_create

int32 Legendre_free

(lnt32 shape,
int32 degree,
int32 order,

int32 deriv,
Legendre * legendre);

(Legendre * legendre);

The Legendre object contains the information and algorithms necessary

to evaluate the Legendre associated functions. The input argument shape

specifies the choice of a triangular or trapezoidal representation of the gravity

field model. The input arguments degree and order specify the maximum

degree and order of the expansion, order is significant only for trapezoidal

fields. The input argument dertv specifies the whether the first and second

derivatives of the Legendre associated functions should be calculated.

49

int32 Legendre__calculate
(float64 u,

Legendre legendre);

The Legendre__calculate method calculates the Legendre associated

functions according to the information contained in iegendre and caches the

data within the object for future use. The value u is the input argument of the

functions. The data is retrieved via calls to the inquiry methods listed below

and in Appendix C.

int32 Legendrejndex (Legendre legendre, [
lnt32 I, Iint32 m);

The Legendre_index method returns the linear array index for the degree

l and order m element. This routine permits the user to access data elements

contained in the objects without any knowledge of the internal mapping of the

data elements.. For example, if p specifies the beginning address of the array

containing the Legendre function evaluations, the value corresponding to

degree l and order m would be accessed through the following code fragment.

50

float64 * p = NULL;

Legendre legendre = NULL;

Legendre_create (TRIANGULAR, 30, 30, NODERIVATIVES, & legendre);

/*

user code

*/

/* extract array containing computed values */

Legendre__p (legendre, & p);

/* value of 1, m legendre function assigned to value */

value ffip [Legendre_lndex (legendre, 1, m)];

2.3.2 Gravity Field Expansion

int32 GravityField_create

int32 GravityField_free

(int32 shape,
int32 degree,
int32 order,
int32 measurement,

lnt32 coordinates,
char * filename,

lnt32 me_format,

GravityField * gfield);

(GravityField * gfield);

The GravityField object contains the information and algorithms

necessary to evaluate gravity field functions. The input argument shape

specifies the choice of a triangular or trapezoidal representation of the gravity

field model. The input arguments degree and order specify the maximum

degree and order of the expansion, order is significant only for trapezoidal

fields. The input argument measurement specifies which series summation to

51

calculate. The input argument coordinates specify the reference frame in which

to return the calculated values. Gravity field parameters are read from filename

with specified format file__format.

int32 GravityField_calculate (float64 radius,

float64 lambda,
float64 phi,
GravityField gfield);

The GravityField_calculate method calculates the gravity field series

summations according the information contained in gfield and caches the data

within the object for future use. The geocentric location of the evaluation is

specified by spherical coordinates radius, lambda, and phi. The data is retrieved

via calls to the inquiry functions listed in Appendix C.

int32 GravityField_partial_length

int32 Gr avityField_extr act_partials

(GravityField gfield,
lnt32 estim_param,
int32 * length);

(GravityField gfield,
int32 which_set,
lnt32 esttm_param,
float64 * partials);

The above GravityField methods facilitate the extraction of the partial

derivatives with respect to the geopotential coefficients. The input argument

estim..param specifies the subset of geopotential coefficients to be considered.

The input argument which_set specifies the choice of gravity field summation

52

(potential, accelerations, or gradients) from which to extract the partial

derivatives. The number of partial derivatives is returned in length. The

partial derivatives are copied into the vector partials which must be at least

length elements long.

2.4 Orbital Dynamics Model

The dynamics governing orbital motion can be represented as a system

of ordinary differential equations. The satellite trajectory is obtained through

the solution of the associated initial value problem. Each physical system

effecting the satellite trajectory is represented by an additional acceleration

term on the fight hand side of the system of ODE's. The only force

considered in this study is the gravitational accelerations associated with the

non-spherical gravity field fixed to the non-uniformly rotating Earth.

The motion of the pole due to precession and nutation is negligible

over the arc length of the examined mission scenarios. Therefore, the true-of-

date system corresponding to the initial arc epoch will be defined as the

inertial reference frame. The gravity field accelerations defined in the TRF

must be transformed to the true-of-date system to yield the correct

(20)

53

accelerations. The transformation is denoted by Zgeocentric..drueofdate in

Equation (20).

Trajectory propagation illustrates a complication in the development of

object oriented routines for satellite applications. The satellite is an example

of an abstraction which at first glance appears to exist concurrently as a

physical object and as a mathematical object. As a physical object, the

satellite comprises a part of the physical system. As a mathematical object, it

appears the satellite is integrated according to the equations of motion. Upon

closer look, the trajectory generation process involves not only the satellite but

also requires the several different physical objects which define the equations

of motion. Also, information recovered from the integration process such as

the state transition information is purely mathematical and would not be

considered a defining characteristic of the satellite object. An abstraction was

chosen that allows for the existence of a purely mathematical integration

object which derives part of its structure from the physical system. The

remainder of this section presents the physical satellite object. A discussion of

the integrator object will appear in the next chapter.

54

lnt32 Satellite_create

lnt32 Satellite_free

(float64 epoch,
lnt32 coordinates,
float64 * state,
Satellite * satellite,
int32 number_forces,
... /* vargs */);

(Satellite * satelUte);

The Satellite object contains the information and algorithms necessary

to manipulate the physical satellite object. The input argument coordinates

specifies the input coordinates of the satellite position and velocity specified

by state at the time index specified by epoch. The input argument number_forces

specifies the number of physical objects which perturb the satellite trajectory.

The list of physical objects completes the variable argument list. Valid

physical objects must have their force property set to TRUE. Data contained

within the Satellite object is retrieved via calls to the inquiry methods listed in

Appendix C.

The following code fragment illustrates the creation of a polar orbiting

satellite object moving under the influence of a non-spherical gravity field to

degree and order 120.

55

tnt32
float64

GravttyField
Satellite

coordinates -. ORBITAL_ELEMENTS;

initial_epoch - J1990,
initial_state [6] ffi{ 7000.0e+0,

1.0e-2,
PI_OVER_2,

O.Oe+O,
0.0e+0,

0.0e+0 };

gfleld = NULL;
satellite ffiNULL;

GravityField_create (TRIANGULAR,
120,

120,
ACCELERATION,

TOPOGRAPHIC,
"JGM3.GEO',

CSR_GEO_FORMAT,

& gfield);

Satellite_create (initial_epoch,
coordinates,
initial_state,

& satellite,
1, gfield);

/*

user code
*/

Satellite_free (& satellite);
GravttyFleld_free (& gfield);

2.5 Observation Models

Two observation datatypes are used in this study. The first datatype is

the satellite gradiometer observation which is sensitive to the medium to high

frequency components of the gravity field. The second type is the GPS high-

low satellite range observation which is sensitive to the low frequency

components of the gravity field. The combination of the two datatypes

56

provides a complimentary set of observations for the recovery of a global

geopotential model.

2.5 1 Satellite Gravity Gradiometry

A gradiometer measures of the spatial rate of change of acceleration.

The satellite gradiometer observation is modeled mathematically by forming

the acceleration difference between two points symmetric to the satellite

center of mass [Rummel, 1989]. Linearization of the difference about the

satellite center of mass yields the fundamental equation of the satellite

gradiometer expressed in Equation (21). U represents the gradiometer

potential, co represents the instantaneous rotation vector of the satellite, 5x

represents the baseline of the accelerometers, and 5a represents the

gradiometer observation.

A gradiometer instrument consists of pairs of linear accelerometers

each of which are sensitive along a single axis. Combinations of the

accelerometer pairs may be formed to generate measurements of the different

spatial gradients.

Certain assumptions are made concerning the gradiometer model used

in this study. The satellite is assumed to rotate such that the satellite reference

57

(21)

flame always aligns to the RTN reference frame. The gradiometer reference

frame maintains a constant offset from the satellite frame according to user

input Euler angles. The rotation effects associated with maintaining the

alignment of the satellite with the RTN system are neglected.

int32 Gradiometer_create

int32 Gradiometer free

(GravityField gfield,
Satellite satellite,

float64 psi,
float64 theta,

float64 phi,
Gradiometer * gradio);

(Gradiometer * gradio);

The Gradiometer object contains the information and algorithms

necessary to model a satellite gradiometer. The input argument gfield specifies

the GravityField object to be observed by the gradiometer. The input argument

satellite specifies the Satellite object upon which the gradiometer is mounted.

The input arguments psi, theta, and phi specify the Euler angles by which the

gradiometer is offset from the satellite reference frame.

lnt32 Gradiometer_ealculate (Gradiometer gradio);

The Gradlometer_calculate method calculates the satellite gradiometer

observation according the information contained in gradio and caches the data

58

within the objectfor futureuse.

methodslistedin AppendixC.

Thedatais retrievedvia calls to the inquiry

2.5.2 Satellite-to-Satellite Ranging

The satellite tracking observable used in this study consists of

simplified GPS measurement which returns an unbiased inter-satellite range

measurement. The satellite range information allows the determination of

differential accelerations acting on the high-low satellite system. The

instantaneous slant range observation is expressed in Equation (22) where r

represents the satellite state vector and x, y, z represent the inertial components

of the state vector.

 t)=ll ,,,gh(t)-FLow(t

p(t) = _](xnizh (t)- xtow(t))+ (Ynigh (t)- Yzow (t))+ (Znizh (t) - ZLow(t))

The recovery of geopotential information from the slant range

observable requires the evaluation of the partial derivatives with respect to the

initial satellite state and the geopotential coefficients. The derivation of the

partials with respect to the initial satellite states is expressed in Equations (23)

and (24).

(22)

59

OR(t) OR(t) 6Thigh(t)

OR(t) OR(t) c_nigh(t)

c_:mgh(to) cTnigh(t) c_mgh_o)

(23)

The mOF(t) and c_(t)

C_Qo) c_(to)

OR(t) OR(t) cTt_(t)

c_:z_w(to) cTLo_(t) cTz_(to)

OR(t) OR(t) c_:_(t)

terms specify the changes in the satellite state

(24)

given a small perturbation in the initial conditions. This corresponds to the

state transition information between initial epoch to and current epoch t.

c_(t) = t_rr_,to)
 (to)
cTF(t) = _,_(t, t0)
 (t0)

The derivation of partials with respect to the geopotential coefficients

is expressed in Equations (26), (27) and (28).

(25)

_ c_R(t) c_t._ (t)OR(t) OR(t) 8Fnish(t) +

67ff cTF_nzh(t) cT"ff cTFz_(t) cTff (26)

60

_p(t) 1 [Xnigh(t)_XLow(t) y,igh(t)_yro_(t)
OTHigh(t) -- p

 p(t) _
OTLow(t) l[xltig h(t)-xz°w(t) Ytti, h(t)--YLo_(t)

(27)

q_p(t) c_(t)

cT"ff C_:nigh(t)

The _(t)
term specifies the change in the satellite state given a small

3"ff

(28)

perturbation in the model parameters. This corresponds to the state transition

information between initial epoch to and current epoch t.

_:(t)--_ra(t, to)
C7ff

The expression for the partials derivatives of the slant range

observations with respect to the geopotential coefficients, _, is given in

Equation (30). The evaluation of the range partials is expressed in the inertial

reference frame.

(29)

_p(/)= _p(t) [ffp,_a(t, to)_ffpr_.a(t, to)]
C .,h (t)

(30)

The perturbations of the range observable are caused by errors in the

initial conditions as well as the error in the geopotential coefficients. Both

sets of parameters must simultaneously be estimated to recover the best update

61

of the geopotential. However, information derived from the high satellite

provides only a small contribution. The results presented in Chapter 7 neglect

the contribution of the high satellite.

int32 SatTrack_create

int32 SatTrack free

(float64 elevationmask,
MsilibABFS lnteg_high,
MsilibABFS lnteg_low,
SatTrack * sst);

(SatTrack * sst);

The SatTrack object contains the information and algorithms necessary

to calculate the satellite-to-satellite tracking observable. The input argument

elevation_mask specifies the elevation mask with respect to the low satellite

below which no range measurements may be taken. The input arguments

lnteg...high and integ_low specify the numerical integration objects associated

with the two satellites.

Iint32 SatTrack_caleulate (SatTraek sst); [

The SatTraek_caleulate method calculates the high-low satellite tracking

observation according the information contained in gradlo and caches the data

within the object for future use. The data is retrieved via calls to the inquiry

methods listed in Appendix C.

62

3. Mathematical Environment

The mathematical environment of the satellite application consists of

the operations which manipulate satellite states and recover model parameters.

A discussion of the least squares method as applied to satellite applications

and the numerical methods used to propagate the satellite trajectory will be

presented.

3.1 Mathematical Objects

Mathematical objects abstract in a generic manner the mathematical

techniques used to manipulate data derived from the physical system. Each

mathematical object shares a common set of properties which specify the

functionality of the object. The function property specifies the general

mathematical technique. The method property (not to be confused with an

object method) specifies the specific manner in which the function is

implemented. Object property values are set at object creation and may be

accessed by the appropriate inquiry method.

All mathematical objects require a two step creation/realization

process. The creation method produces an instance of the object according to

the parameters describing the mathematical technique. The realization method

associates the mathematical object with appropriate physical objects. In the

63

following discussion of mathematical techniques implemented in this

research,theassociatedmathematicalclassesanda samplingof their methods

will bedescribed. A completelist of all objectmethodsasproposedby this

researchisprovidedin AppendixC.

3.2 Least Squares Estimation

The least squares estimation process recovers physical model

parameters which best fit a set of true observations. The estimation process

begins with the design of a physical system model which approximates the

true physical system. The observations are recreated in the simulated world

and compared to the true observations. Observational and dynamic

parameters are adjusted to minimize the sum of the squares of the observation

residuals. Non-linear physical models require an iterative adjustment until a

specified convergence is satisfied. Observation residuals may also be

examined to identify systematic errors which may then be incorporated into

the physical model.

Typical physical processes require complex, non-linear models. The

estimation problem is simplified by converting the non-linear problem into a

linear problem. The linearization process begins by representing the true

physical system by a system of non-linear ordinary differential equations. 2True

64

is partitioned

parameters.

into subvectorsof dynamic variables and dynamic model

_rrue = j _,(zr_,,,t)

:__, = I Xrr_]

The non-linear system may be converted into a linear system through

the introduction of a reference system of similar form.

(31)

-F(X't;a)1o

The dynamics of the true system are expanded in a Taylor series about

the reference system. If the two systems are sufficiently close in space and

time, the higher order terms of the expansion may be neglected.

r'(t)=_(Z,t)+ _-_t) (zr_" - Z)

The difference between the dynamic systems x = Z r,,,, _ _7 may now

be expressed in terms of a linear system of ordinary differential equations.

(32)

(33)

65

AC_,t) = c_(Z,t) I°_'(X't;a)

-d=L
da
0

This homogeneous ODE possesses a solution which may be

formulated in terms of the state transition matrix.

(34)

x(t):O(t, to)x(to)

cTX(t) OX(t)

O(t,/0) = cTX(t0) Oa
0 I

The solution of the state transition matrix is derived through

substitution into Equation (34). The resulting ODE is usually evaluated by

numerical integration methods.

(35)

+(t, to) = A(Z,t)O(t,t o)

O(to,t o)= I

The observation-state relationship in Equation (37) may be linearized

in a similar manner to produce the set of linear observation equations in

Equation (38). The value ei represents combined effect of all systematic and

random errors in the measurement.

(36)

Y,=
(37)

66

The expressionfor the observationresidualsyi in Equation (38) is

expressed in terms of the state differences at epoch tt. Using Equation (35) the

observation equations may be formulated in terms of the state differences at

initial epoch to.

7./ r \,,_.r_ xr. \
y, = _[Xtt,._p)mtt,,to)Xtto)+ e,

y, = H(X(t, _ fl_(t o)+ e,

Finally, the least squares minimization of the observational residual

results in the well-known relationship for the state difference update.

_ =(Hr H)-_ Hr y

Equation (40) represents the normal equation formulation of the least

squares solution. The solution may also be formulated in terms of orthogonal

transformations which yield greater precision benefits. Two reasons motivate

the use of normal equations over orthogonal transformations. First, the

parallel implementation of the normal equation expression is simpler than that

of the orthogonal transform. Secondly, different sets of normal equations are

quickly combined via an _)(n 2) addition operation as compared to an O(n 3)

accumulation operation for orthogonal transformations.

67

(38)

(39)

(40)

As described in Section 2.5.2, the geopotential information derived

from the satellite tracking measurement requires the estimate of the low

satellite intial conditions in addition to the geopotential coefficients. A

geopotential estimate including the contribution due to the initial state

adjustment at each subarc

Appendix J presents the

does not require an explicit state estimate.

methodology used to form the geopotential

covariance from satellite tracking information.

int32 Batch_create

int32 Batch_free

(int32 batch_size,
Batch * estimator);

(Batch * estimator);

The Batch object contains the information and algorithms necessary to

calculate the normal equation formulation of the least squares estimate. The

input argument batch.size specifies the number of observation equations to

cache before performing the accumulation operation. As described in

Section 1.3.4.2, the creation routine only initializes an instance of the Batch

object. The initialization is completed via a call to the realization routine.

68

lnt32 Batch_initialize_parameters (Batch estimator,
int32 n_parm_types,
... /* vargs */);

The Batch_initialize_parameters method informs the Batch object of the

parameters to be estimated. The input argument n_parm_types specifies the

number of different dynamic and observation parameter types. The list of

parameter types and subarc information (if necessary) completes the variable

argument list. The method must be invoked prior to the realization method.

Logically, the functionality is part of the object realization and should be

combined with the realization method, but language complexities associated

with the variable argument list contribute to the use of a separate method.

int32 Batch_realize (Batch estimator,

int32 which_obs,
PhysObj observation,
float64 sigma);

The Batch_realize method extract information from the simulated

environment to complete the realization process. The input argument

which_.obs specifies the type of physical object. The physical object must have

its observable property set to TRUE. The input argument sigma specifies the a

priori variance of the observation.

69

int32 BatchjncremenLsubarc

int32 Batch_accumulate

int32 Batch_solve

(Batch estimator);

(Batch estimator,

PhysObj observation);

(Batch estimator);

The above Batch methods provide the functionality of the Batch object.

The Batch_incremenLsubarc methods informs the Batch object to begin

processing the next subarc. The Batch accumulate method extracts the current

observation residual and partial derivative information from the physical

object observation. The normal equations will not be immediately updated, but

rather batch_size number of partials will be cached inside the object to permit

the use of a matrix-matrix multiplication. The Batch_solve method performs

the linear system solve of the normal equations and caches the information

within the object. Data contained within the Batch object is retrieved via calls

to the inquiry methods listed in Appendix C.

3.3 Numerical Integration

The propagation of a satellite trajectory requires the numerical

integration of the satellite's equations of motion. Many different methods of

numerical integration exist with each method possessing certain

computational cost and numerical accuracy attributes. Of the different

methods, multistep integration routines have been shown to be ideally suited

70

to the smooth trajectories associated with satellite motion [Lundberg, 1981].

The multistep methods require knowledge of the integration state values at

multiple epochs in order to advance the solution. Lundberg [1981] describes

many different implementations of the multistep method as applied to the

satellite propagation problem.

The Center for Space Research numerical integration software library

MSILIB [Lundberg, 1991] provides the numerical integration functionality for

this research. The library implements four different multistep methods. Of

the methods, the Adams-Bashforth-Moulton algorithm integrates the satellite

equations of motion and the state transition matrix. The Adams-Bashforth-

Moulton algorithm is a Class I formulation which integrates first order

differential equations. The MSILIB Class 11 formulations operate directly on

second order differential equations providing greater accuracy for long

integration intervals. The familiarity with first order systems of equations

influenced the choice of a Class I formulation. The MSILIB library was

written in FORTRAN. A numerical integration object written in C calls the

library to perform the numerical integration.

71

int32 MsiUbABFS_create

int32 MsilibABFS_free

(Int32 state_transition,
lnt32 nord,

int32 start_nloop,
float64 start_alim,
float64 mesh_size,

MsilibABFS * integrator);

(MsilibABFS * template);

The MslUbABFS

necessary to propagate

transition information.

object contains the information and algorithms

a satellite trajectory and calculate satellite state

The input argument state__transttton specifies the

computation of state transition information. The input argument nord specifies

the order of the multistep integration. The input argument start aloop specifies

the maximum number of iterations in the starting procedure, and the input

argument start alim specifies the starting convergence.

meshsize specifies the spacing in the multistep mesh.

only initializes an instance of the MsilibABFS object.

completed via a call to the realization routine.

The input argument

The creation routine

The initialization is

I Int32 MsilibABFS_initiaUze__parameters

(MsIIibABFS Integrator,

Int32 n_parm_types,
.. /* vargs */);

The MslllbABFS._!nitialize_parameters method informs the MsilibABFS

object of the parameters against which state transition information should be

calculated. The input argument n_parm_types specifies the number of different

72

dynamic and observation parameter types. The list of parameter types

completes the variable argument list. The method must be invoked prior to

the realization method. Logically, the functionality is part of the object

realization and should be combined with the realization method, but language

complexities associated with the variable argument list contribute to the use of

a separate method.

int32 MsilibABFS_realize

int32 MsilibABFS_free

(MsilibABFS integrator,
int32 nsats

... /* vargs */);

(MsilibABFS * integrator);

The MsilibABFS_realize method extract information from the simulated

environment to complete the realization process. The input argument nsat

specifies the number of physical objects to be propagated. The list of physical

objects complete the argument list. The physical objects must have their

dynamic properties set to TRUE.

lnt32 MstUbABFS..propagate
lnt32 MslllbABFS_restart

(MsiltbABFS integrator,
float64 tout);

(MstUbABFS integrator);

The above MsllibABFS methods provide the functionality for the

MsiUbABFS object. The MsillbABFS__propagate method integrates the trajectory

according to the forces associated with the satellite objects. The input

73

argument tout specifies the final epoch of the integration with respect to the

initial epoch of the satellite state. The MslllbABFS_restart method performs an

integration restart operation and reinitializes the state transition matrix to

identity. Data contained within the Msinb.AdBFS object is retrieved via calls to

the inquiry methods listed in Appendix C.

74

4. Computational Environment

The main focus of this research is the examination of parallel

computational techniques to improve the performance of precision orbit

determination and geopotential recovery applications. The development of

parallel techniques requires the examination of the various layers of the

computer architecture. The first issue concerns performance issues on scalar

processors. The next layer directly address parallel computing and the

development of high performance accumulation and matrix factorization

algorithms. Finally, the parallel methods will be extended to out-of-core

processing techniques. The discussion in this chapter will conclude with an

examination of data-parallel implementation methods for numerical

integration algorithms.

4.1 Scalar Processor Performance Issues

A typical serial architecture consists of two main components. The

central processing unit (CPU) performs the work, and the main memory

(RAM) contains the data. The communication bandwidth between the CPU

and RAM on the current generation of microprocessors is insufficient to

sustain peak performance [Astfalk, 1990]. A significantly faster memory, or

cache, provides a temporary storage location for data. Algorithms structured

75

to exploit cachememoryexperiencesignificantperformanceimprovements.

Cachereuseis accomplishedin linear algebraoperationsby forming block

partitionedalgorithms. The block algorithmstreatthe matricesin terms of

two-dimensionalsubmatricesinstead of collections of row and column

vectors.Block algorithmspromotemaximumcachereuseby minimizing data

trafficbetweenthecacheandmainmemory[Dongarra,1990].

The managementof communicationbetweenRAM, cacheand the

CPUcannotgenerallybecontrolledfrom a high level language such as C or

FORTRAN. High performance algorithms are realized through the use of

highly optimized low level subroutines. The Basic Linear Algebra

Subprograms (BLAS) comprise the computational primitives for linear

algebra operations. Three different levels of the BLAS exist. The Level 1

BLAS are vector-vector operations which perform _(n) operations on 8.(n)

data elements. The Level 2 BLAS are matrix-vector operations which perform

8(n 2) operations on 8(n 2) data elements. The Level 3 BLAS are matrix-matrix

operations which perform 8(n J) operations on _(n 2) data elements. The

Level 3 BLAS operations manipulate data in a manner which exploits cache

memory.

76

BLAS Level One

xCOPY (n, x, incx, y, iney)

xSCAL (n, alpha, x, incx)

xAXPY (n, alpha, x, Incx, y, Incy)

BLAS Level Two

xGEMV (trans, m, n, alpha, a, Ida, x, lncx, beta, y, lncy)

xSYMV (uplo, n, alpha, a, Ida, x, incx, beta, y, incy)

xTRMV (uplo, trans, diag, n, a, Ida, x, lncx)

xTRSV (uplo, trans, diag, n, a, Ida, x, lncx)

xGER (m, n, alpha, x, incx, y, lncy, a, Ida)

xSYR (uplo, n, alpha, x, incx, a, Ida)

xSYR2 (uplo, n, alpha, x, incx, y, incy, It, Ida)

BLAS Level Three

xGEMM (transa, transb, m, n, k, alpha, a, Ida, b, ldb, beta, c,

Idc)

xSYMM (side, uplo, m, n alpha, a, Ida, b, ldb, beta, c, Idc)

xSYRK (uplo, trans, n, k, alpha, a, Ida, beta, c, Idc)

xSYR2K (uplo, trans, n, k, alpha, a, Ida, b, ldb, beta, c, Idc)

xTRMM (side, uplo, transa, diag, m, n, alpha, a, Ida, b, Idb)

xTRSM (side, uplo, transa, diag, m, n, alpha, a, Ida, b, Idb)

Figure 4 Basic Linear Algebra Subprograms for Real Valued Operations

4.1.1 Batch Filter Implementation

The following discussion illustrates the implementation of the BLAS

within the precision orbit determination batch algorithm. A single iteration of

the batch algorithm in a manner similar to Tapley is presented in Figure 5. A

number of opportunities exists to exploit the BLAS primitives. The mapping

of the partial vector, the accumulation of the partial information and the linear

system solve all require dense linear algebra operations. In addition, implicit

operations such as those found in the right hand side of the dynamic model

may also incorporate dense linear algebra operations. As the number of

77

estimated parameters increases, the cost of accumulation and linear system

solve dominate the total cost of the batch algorithm.

Initialize at to

While (observations remain and ts < tf)

Read observation at tt

If all observations have been processed, then break

Integrate reference trajectory to t_

Form Hi = _-[ifYP(ti,to)

Accumulate _ Hr R[I Hi, _ Hr R[l y_
i t

Increment tt = t_-I
End while

Solve normal equations

Figure 5 Tapley's Batch Least Squares Algorithm

4.1.1.1 Mapping of the Partial Vector

The mapping of the partial vector to the initial epoch requires the

transformation of the partial vector at the current epoch. This operation

consists of a matrix-vector multiply (xGEMV). The BLAS routine is written in

terms of the operation y _--aAx +fly where the vectors are considered

column-oriented. Hence, the necessity of the transpose operation as presented

in Figure 6.

4.1.1.2 Accumulation of the Normal Matrix

The accumulation of the normal equations requires the addition of

information to the normal matrix and normal equation fight-hand-side. The

normal matrix is updated via a rank-1 update (xGER) of the partial vector. The

78

rank-1 update is a Level2 BLAS operation. Sincethe normal matrix is

symmetric,the symmetricvariantof the rank-1update(xSYR)which updates

only the lower or upperportion of the matrix may be used. The normal

equationfight-hand-side is updated through the summation of a scaled vector

(i.e., y <---ax +y). The axpy operation (xAX1)¥) is a Level 1 BLAS operation.

As mentioned previously, high performance on scalar processors requires the

implementation of Level 3 BLAS operations. Therefore, the best performance

would not be expected from the algorithm as stated.

The algorithm may be converted to Level 3 BLAS operations by

forming batches of observations. The symmetric rank-1 operation becomes a

Level 3 symmetric rank-k (xSYRK) operation.

Level 2 matrix-vector multiply (xGEMV).

The axpy operation becomes a

The incorporation of these

modifications into the batch accumulation algorithm requires only the addition

of an If statement as shown in Figure 6.

4.1.1.3 Linear System Solve

The accumulation of the observation equations creates a large, dense

linear system which must be solved to recover the state update. Assuming

sufficient observability of the estimated parameters, the system may always be

assumed positive definite [Golub, 1980]. The preferred method of solution

requires the Cholesky factorization of the normal matrix and two triangular

79

systemsolves. Thedevelopmentof theCholeskyfactorizationispresentedin

Appendix F. The solutionof the linear systemmay be easilyaccomplished

oncethematrix factorizationis complete. Theoriginal systemis groupedin a

mannerwhich leadsto a sequenceof Level2 BLAS triangularsystemsolves

(xTRSV)asseenin Equation(41).

L(Lr x) = y

Lz=y

LTX = Z

The linear system solve algorithm may be extended to the inversion of

the normal matrix for the purposes of obtaining the variance-covariance

information. The goal of the inversion is the recovery of a matrix that when

multiplied by the normal matrix yields the identity matrix. The search for this

matrix leads to the construction of a linear system which consists of the

identity matrix on the right-hand-side. The determination of the covariance

matrix follows a sequence of Level 3 BLAS triangular system solves with

multiple right-hand-sides (xTRSM) as seen in Equation (42).

L(L P)=I
LZ= I

Lrp = Z

Figure 6 presents the batch algorithm including the Level 3 BLAS.

(41)

(42)

80

Initialize at to

Do while (observations remain and t_< tf)
Read observation at ti

Integrate reference trajectory to ti

!

! Accumulate a batch at a time
l

if (batch is full) then

xSYRK ("L', "N', n, m, 1.0e+0, H, ld_h, 1.0, HtH, Id_hth)
xGEMV ("N', m, n, 1.0, H, ld_h, y, 1, 1.0, Hty, 1)

end if

Y

! map partials to initial epoch
!

xGEMV ("N', n, n, 1.0, PHI, ld_phi, Htilde, 1, 0.0, H(l,l), ld_h)

Increment tl ffiti+l

End while

! Accumulate incomplete batches

xSYRK ("L", "N", n, i, 1.0e+0, H, ld_h, 1.0, HtH, ld_hth)

xGEMV ("N", i, n, 1.0, H, ld_h, y, 1, 1.0, Hty, 1)

wSolve normal equations

xCHOLESKY (n, HtH, ld_hth)

xTRSV ("L', "N", "N", n, HtH, ld_hth, Hty, 1)
xTRSV ("L', "T", "N', n, HtH, ld hth, Hty, 1)

!

! Invert normal matrix
!

set_identity (n, P, Id__p)

xTRSM ("L", "N', "N', "N', n, n, 1.0, HtH, ld_hth, P, ld_p)
xTRSM ("L', "N', "T', "N', n, n, 1.0, HtH, ld_hth, P, ld_p)

Figure 6 Level 3 BLAS Modifications to Tapley's Batch Algorithm

81

4.2 Parallel Performance Issues

Parallel processing is the distribution of computational work among a

collection of processors for the purpose of increased computational

performance. Many types of parallel processors exist. Many users are

familiar with the shared memory vector supercomputers such as the Cray Y-

MP and Cray T90. These architectures consist of a relatively small number of

very powerful processors which share a common memory unit. A second type

of parallel architecture consists of a larger number of independent processor-

memory subsystems connected by a high-speed network. Examples of

distributed memory machines include the Cray T3E and the Intel Paragon.

The shared memory architectures offer a simple model for parallel

algorithm design as data can be exchanged between processors quite easily

through the common memory. Unfortunately, shared memory architectures

also share a common communications bus. The capacity of the bus imposes a

practical limit to the number of processors which exist on the system. As a

result, improved aggregate performance on shared memory architectures

depend primarily on performance gains on the individual processors

[Astfalk, 1990].

Distributed memory architectures avoid memory access problems by

physically distributing memory units to each of the processing elements. The

82

size of the network can increase without affecting individual processor

performance and, theoretically, may consist of an arbitrarily large number of

processors. The aggregate performance improves by simply adding more

processors.

Communication between processors performed via common memory

on shared memory architectures must now be performed over a network on the

distributed memory architectures. The cost of communication between

processors is significantly larger than the cost of moving data between main

memory and the CPU. In addition, network conflicts also degrade

performance. An effective algorithm design is required to organize and

minimize inter-processor communication in the distributed memory

environment.

From the point of view of the individual processor, the memory on

remote processors may be treated as an additional level in its local memory

hierarchy. The use of block algorithms would appear to be the nattLral method

of minimizing data traffic and achieving high performance on distributed

memory architectures. Block algorithms yield the desired result. However,

the complexity of the parallel implementations increases greatly when moving

from a serial to parallel block algorithm. The application programmer is

responsible for the distribution and communication of data in the parallel

83

implementation.Themanagementof thecommunicationrequiresa complete

understandingof thedatamovementandaneffectiveprogrammingparadigm.

Messagepassingis oneof themorecommonprogrammingparadigms

ondistributedmemoryarchitectures.Undermessagepassing,communication

betweenprocessorsoccursin the form of messages.The sourceprocessor

executesa sendoperationto initiate the communication,andthe destination

processorexecutesa receiveoperationto completethe transmissionof data.

The send and receiveoperationsare not required to be synchronous,or

blocking. Asynchronous,or non-blocking,messagepassingpotentiallyhides

the communicationcost by overlappingthe communicationoperationwith

useful computations. For example,a non-blockingreceivemay be posted

prior to the correspondingsend operation. The destination processor

continuesperformingusefulwork until thecommunicationcompletes.

Collectivecommunicationprovidesahigherlevelsetof instructionsto

direct the movementof data. Parallellinear algebraalgorithmsin particular

benefitfrom theuseof collectivecommunicationoperations.

84

Collective Operation I

Barrier

MPI Routine

MPLBarrier

Broadcast MPI_.Bcast

Gather MPLGather

MPLGatherv
Scatter

Collect

Reduce-to-One

Reduce-to-All

Distributed Reduce

MPLScatter
MPLScatterv

MPI_Allgather

MPLAllgatherv
MPLReduce

MPLAllreduce

MPI_.Reduce_.scatter

Description

Blocks execution until all processors in the

_roup have reached the barrier point

Information residing on a single processor is

copied to all processors

Information distributed across all processors

is copied to a single processor

Information residing on a single processor is

distributed across all processors

Information distributed across all processors

is copied to all processors

Element-wise reduce operation performed on
information residing on all processors

leaving the result on a single processor
Element-wise reduce operation performed on

information residing on all processors

leaving the result on all processors

Element-wise reduce operation performed on
information residing on all processors

leaving the result distributed across all

processors

Table 4 Collective Communication Operations

4.2.1 Parallel Linear Algebra

Dense linear algebra operations require an order of magnitude greater

number of computations to number of data elements communicated. The

situation presents a significant opportunity to exploit parallel resources. Two

competing paradigms currently dominate implementations of parallel dense

linear algebra. Block cyclic distributions provide the basis for implementation

such as High Performance FORTRAN and ScaLAPACK. Physically Based

Matrix Distribution (PBMD) forms the paradigm for the PLAPACK package.

85

Block cyclic distributionsstartwith the assignmentof the {)(n2) data

dements associatedwith the linear operatoracrossa processorarray. For

scalabilityreasons,theprocessorarrayis organizedin a two-dimensionalgrid

layout[Dongan'a,1994]. Thesimplestmethodis ablockeddistributionwhere

the matrix is partitionedinto r row blocks and c column blocks. The block

(ij) is assigned to processor (ij). This distribution suffers from load

balancing problems for triangular and banded matrices as some processors

may not receive any data. A finer blocking of the matrix in row and column

directions and a wrapping of the blocks around the processor grid provides an

effective means of load balancing.

The block cyclic distribution possesses inherent difficulties interfacing

with application sofIware. The distribution of the domain and range spaces

are imposed by the distribution of the linear operator. If the generation of the

domain elements and/or the recovery of the range elements proceed more

effectively with different distribution, a significant incompatibility is created

between the application and the parallel linear algebra routine. Bridging this

incompatibility may require a significant coding effort and

degradation in performance due to data redistribution.

Block cyclic distributions are inherently complex to

because of a lack of natural communication structures.

86

significant

implement

Communication

operationsinvolve the movement of matrix blocks between the rows and

columns of processors. The developer must manage the message passing and

maintain book-keeping of block indices and offsets. One parallel linear

algebra library, ScaLAPACK, attempts to encapsulate communication details

within the Basic Linear Algebra Communication Subprograms (BLACS). The

block mapping and buffer space management remains exposed yielding a very

complex and intricate piece of software.

Physically Based Matrix Distribution (PBMD) presents an alternative

parallel linear algebra distribution paradigm which avoids many of the

problems of block cyclic. PBMD begins by addressing the issue of

compatibility between the application software and the linear algebra library.

Under PBMD, the user distributes elements of the one-dimensional domain

and range space over the two-dimensional array of processors to suit the

application. The resulting vector distributions induce the distribution of the

linear operator in a manner to yield a highly effective parallel linear algebra

implementation.

The parallel implementation of the matrix-vector multiplication

illustrates the principles of PBMD (See Figure 7). Each element of the

domain space x multiplies a column of the operator A. Similarly, each

element of the range space y is the result of a summation across the rows of

87

operatorA. Therefore, a relationship exists between the columns of A and the

element ofx and the rows of A and the elements ofy. Given a distribution ofx

and y on the processor array, A should be distributed in a manner which

naturally brings together the columns of A with the appropriate elements of x

and the rows of A with the appropriate elements of y. This distribution is

identified by projecting the indices of the domain vector x in the column

direction and the indices of the range vector y in the row directions. The

projected indices specify the location of the matrix row or column block. The

matrix-vector multiplication can be stated quite elegantly in terms of

collective communication operations.

88

The matrix-vector multiplication y <---Ax may be written as the summation,

y = Aox o + Aix I+.'.+Atx _ (43)

where As is the l_hcolumn of A. This form exposes the relationship between

the columns of A and the elements of x. Likewise, the operation may be
written as,

Yl (44)
At 0Xo + A t 1xl +.

= "'t"A1 iXi I

LAj.0x0+ Aj. x, +..+Aj,x,]

This form exposes the relationship between the rows of A and the elements of

y. Suppose that x and y have been divided into an equal number of partitions

and those partitions have been distributed identically across a 3x4 array of

processors (i.e., partition x,. is located on the same processor as y,.). The matrix
distribution is the defined by the projection of the block indices in the row and
column direction.

1

4

7

10

2

5

8

11

91011

-7
:7

The algorithm for the parallel matrix-vector multiplication may be stated as,

Collect x in columns to _"

Perform the local matrix-vector multiply _ <---Al,/x"

Distributed reduce._ in rows to y

Figure 7 Matrix-Vector Multiplication Under PBMD

89

A significant characteristic of PBMD is the natural communication

structure implicitly defined by the distributed vector. The communication

structure consists of data mappings related by collective communication

operations. The vector itself comprises one mapping. The projection of the

vector onto a single row or column of processors comprises another mapping

named a projected vector, or pvector. A duplicated projected vector, or

dpvector, mapping is constructed by the simultaneous existence ofpvectors on

every row or column of processors. The relations between these fundamental

objects are shown in Figure 8.

1
Vector

Collect

Distributed
Reduce

GatherScatter

Duplicated [
Projected

Vector

Broadcast T I Reduce-

[_ to-One

Vector

Figure 8 Communication Structure Between Vector Derived Objects

Classes of two-dimensional data objects may be developed if the

vector object is permitted to possess a width greater than one. The multivector

may be viewed as a collection of vector objects of equal length and distributed

identically. The projection of the multivector yields a projected multivector.

90

Duplicated projected multivectors consists of projected multivectors

simultaneously existing on all rows or columns of processors. Finally, the

matrix distribution is determined by the projection of vector objects in the

processor row and column directions as previously described.

I Duplicated I Collect
Collect Projected

Multivector

1ois iu u ro,sTI,
Multivector . Multivector _ Matrix

" Scatter Scatter "

Figure 9 Communication Structure Between Multivector Derived Objects

4.2.2 PLAPACK Implementation

The PLAPACK parallel linear algebra library primarily consists of an

object oriented infrastructure to describe and manage parallel linear algebra

object distributions. PBMD describes the distribution of data. The

Release 1.0 implementation possesses only a single inducing vector. The

inducing vector consists of constant size vector partitions distributed across

the array of processors in cohmm-major order. Linear algebra objects

encapsulate the details of the distribution. The object-oriented nature of the

packages allows the development of high level routines which hide virtually

91

all theparallel implementationdetails. However,throughthemanipulationof

different data objects and in-lining functionality, the experienced programmer

may optimize performance to a considerable degree. The remainder of the

section provides a summary of the PLAPACK package, van de Geijn [1997]

describes the PLAPACK package in its entirety.

The typical PLAPACK user interacts with linear algebra objects

through the manipulation of object views. An object view corresponds

directly to the blocking specified in linear algebra block algorithms. As a

result, the PLAPACK code exhibits a one-to-one correspondence to the

natural expression of block algorithms as described in classroom setting.

PLAPACK facilitates code development even further by incorporating view

manipulation routines which discourage the use of explicit indexing. Users

specify views according to partitions of larger linear algebra objects. The

PLAPACK algorithms step through the entire object by sliding a view across

the object or by recursively splitting a global view into even smaller partitions.

The different object types available in PLAPACK correspond to those

described in the previous section. A single commtmication routine, PLA Copy,

performs all inter-processor data movement for PLAPACK. PLA Copy

identifies the correct collective operation based on the object types and

92

performs the optimum communication without any additional information

required from the programmer.

4.2.3 Cholesky Factorization

The parallel Cholesky factorization implements the left-looking variant

of the algorithm as presented in Appendix F. The following description of the

parallel algorithm refers to Figure 10.

Lines 12-21

Line 22

Lines 25-30

Lines 31-39

Lines 40-55

Line 56

Line 57

Creates the multiscalar scale parameters required by the
BLAS function calls.

Initialize the matrix views to a_done and a_next. At any

point in the algorithm a_done consists of the matrix block

A_,0 and A2,0. a_next consists of the matrix blocks At,l,
AI,2, A2,1 and A2,2.

Determine the size of matrix block At,t which can

completely exist on a single processor. If size is equal to
zero, the faetorization is complete. Otherwise, create

views into the appropriate matrix blocks.

Perform the update of the current column panel based on
the previous multiplication. The row panel Al,0 which

exists on a single row of processors must be copied to the
other processor rows. The creation of a duplicated row

projected multivector facilitates the copy. Likewise, the
duplicated column projected multivector provide

temporary storage of the multiplication result before
reduction into the current column panel.

Optimize the matrix multiplication. On the Cray T3E, the
no transpose, transpose GEMM operation is not well

optimized. An explicit transpose operation enables the
use of the well optimized no transpose, no transpose

GEMM operation.

Reduce the results of the matrix-matrix multiplication into

the current column panel.

Perform the single processor Cholesky factorization on

the matrix block At,1.

93

Lines58-62

Lines 63-64

Update the remainder of the column panel. The

duplicated multiscalar provides work space for the
broadcast ofA u.

Adjust the views for the recursive application of the
algorithm.

94

1

2

3

4

5

6

7

8

9

10

11

12

13
14

15

16
17

18

19

20

21

22

23

24

25
26

#include "PLA.h"

int PLA Chol/(lnt lnt_uplo, PLA_Obj a)

int size, size_top, owner top, sizeJeft, owner_left, length;

PLA_Template template -- NULL;

PLA Obj adone = NULL, anext = NULL,

al0 = NULL, all -- NULL, a12 = NULL,

al0_dup = NULL, all dup = NULL,

a20 = NULL, a21 = NULL, a21_dup = NULL,

a_col -- NULL, a_eoldup = NULL,

min_one = NULL, zero = NULL, one = NULL;

PLA_Obj__template (a, & template);

PLA_Mscalar_create (MPI_DOUBLE, PLA_ALL_ROWS,
PLA_ALL_COLS, 1, 1, template, & one);

PLA Obj_set to one (one);

PLA_Mscalar_create (MPI_DOUBLE, PLA ALL_ROWS,
PLA_ALL_COLS, 1, 1, template, & zero);

PLA_Obj_seLto_zero (zero);

PLA_Msealar_ereate (MPI_DOUBLE, PLA_ALL_ROWS,

PLA..ALL_COLS, 1, 1, template, & min_one);

PLA_ObjjeLto_minus_one (min_one);

PLA_Obj_vert_spllL2 (a, 0, & adone, & anext);

while (TRUE)

{

PLA_Obj_spllt_stze (anext, PLA_SII)E_TOP, & size_top,
& owner_top);

95

27

28

29

30

31

32

33
34

35

36

37

38

39

40

41

42

43

44

45

46

47

48
49

50

51

52

53

tt'/¢

PLA_ObjjpliLsize (anext, PLA_SIDE_LEFT, & size left,
& owner_left);

if ((size -- min (size_top, size_left)) =_- 0) break;

PLA_Obj vert_spliL2 (anext, size, & a_col, & anext);

PLA_.Obj_horz spilL2 (a_col, size, & all, & a21);

PLA_Obj__horz spliL2 (adone, size, & al0, & a20);

PLA_Pmvector_create_conf_to (adone, PLA__PROJ_ONTO_ROW,

PLA_ALL ROWS, size, & al0_dup);

PLA Obj_seLorientation (al0, PLA_PROJ_ONTO_ROW);

PLA_Copy (al0, al0_dup);

PLA Pmvector_create_conf_to (adone, PLA_PROJ_ONTO_COL,

PLA_ALL COLS, size, & a col dup);

PLA_Obj setto_zero (a col dup);

PLA_Local_gemm (PLA NO TRANS, PLA TRANS, min__one, adone,

al0_dup, zero, a col dup); */

int loc_len, loc_wid;

PLA_Obj temp_mscalar = NULL;

double * buffer;

PLA_Obj__loeal_length (al0_dup, & loc_len);

PLA_Obj_locaLwidth (al0_dup, & loc_wid);

PLA_Mscalar_create (MPI_DOUBLE, PLA_ALL_ROWS,

PLA ALL_COLS, loc_wld, loc_len, template, & temp mscalar
);

PLA_Obj locaLbuffer (temp_mscalar, (void **) & buffer);

PLA_Obj_extracLtranspose_contents (al0_dup, loc_wtd, 1,
& loc_wtd, & loc_len, buffer);

96

54

55
56

57

58

59

60

61

62

63

64
65

66

67

68

69

70

71

72

73

74

75

76

77

78

if (loc_wid • 0)

PLA_Local_gemm (PLA__NO_TRANS, PLA_NO TRANS,

min one, adone, temp mscalar, zero, a__col_dup);

PLA Obj_free (& temp_mscalar);

}

PLA_Reduce_x (PLA_SHAPE_LOW_TRAP, a col dup, one, a_col);

PLA_Local_chol (all);

PLA_Mscalar_create conf to (all, PLA_ALL_ROWS,

PLA_INHERIT, & all_dup);

PLA Copy (all, all_dup);

PLA_LocaLtrsm (PLASH)E_RIGHT, PLA_LOW_TRIAN,
PLA TRANS, PLA_NONUNIT DIAG, one, all_dup, a21);

PLA_Obj_view_shift (anext, size, 0, 0, 0);

PLA_Obj view_shift (adone, size, 0, size, 0);

}

PLA_Obj_free (& adone);

PLA_Obj_free (& anext);

PLA_Obj_free (& al0);

PLA_Obj_free (& al0_dup);

PLA_Obj_free (& aU);

PLA_Obj_free (& all_dup);

PLA_Obj_free (& a12);

PLA_Obj_free (& a20);

PLA_Obkfree (& a21);

PLA_Obj free (& a21_dup);

97

79

80

81

82

83

84

85

PLA_Obj_free (& mln_one);

PLA_Obj_free (& zero);

PLA_Obj free (& one);

PLA_Obj free (& a_col);

PLA Obj_free (& a_col_dup);

return (PLA_SUCCESS);

Figure 10 PLAPACK Cholesky - Parallel Implementation

98

4.2.4 Triangular Solve Multiple RHS

The parallel triangular solve with multiple fight-hand-sides

implements the algorithm presented in Appendix G. The following

description of the LLNN variant refers to Figure 11. The LLTN variant

possess a similar implementation.

Lines 10-15

Lines 16-17

Line 18

Lines 21-25

Lines 26-30

Lines 31-32

Lines 33-35

Lines 36-37

Line 38

Creates the multiscalar scale parameters required by the
BLAS function calls.

Initializes the views into the matrix objects.

Performs scaling of matrix B prior to TRSM algorithm.

Determine the size of matrix block A0.0 which can
completely exist on a single processor. If size is equal to

zero, the operation is complete. Otherwise, create views

into the appropriate matrix blocks.

Copy the current column of A into a duplicated column
projected multivector. The update of the row panel Bo

requires copying data corresponding to matrix block A0,0,
and the update of Bt requires copying data corresponding

to matrix block .41,0.

Update the row panel B0.

Copy the current row of B into a duplicated row oriented

projected multivector to set up the matrix multiplication.

Update the matrix B1.

Adjust the views for the recursive application of the
algorithm.

99

7

8

9

10
11

12

13
14

15

16

17

18

19

20

21
22

23
24

25

lnt PLA_Trsm_lln (lnt unit, PLA_Obj alpha, PLA_Obj a, PLA_Obj b)

{

lnt size, sizetop, owner_top, sizeleft, ownerJefl;

PLA Template template ffiNULL;

PLA_Obj a_cur ffiNULL, a_col ffiNULL, a_coLdup ffiNULL,

a00_dup ffiNULL, al0_dup ffiNULL,

b_cur ffiNULL, b_row ffiNULL, b_row dup ffiNULL,

minus one ffiNULL, one ffiNULL;

PLA_Obj_template (a, & template);

PLA_Mscalar_create (MPLDOUBLE, PLA_ALL ROWS,

PLA_ALL_COLS, 1, 1, template, & one);

PLA_Obj_seLto one (one);

PLA_Mscalar__create (MPI DOUBLE, PLA_ALL_ROWS,

PLA_ALL_COLS, 1, 1, template, &minus_one);

PLA_Obj. set to minus_one (minus_one);

eLA_Obj_view all (a, & a_cur);

PLA_Obj_view_all (b, & b_cur);

PLA_Scal (alpha, b_cur);

while (TRUE)

{

PLA_Obj__spliLsize (a_cur, PLA SIDE_TOP, & size_top,

& owner_top);

PLA_Obj_spliLsize (a_cur, PLA_SIDE_LEFT, & sizeJeft,
& owner_left);

if ((size ffimin (topjlze, left_size)) _ffi 0) break;

100

26

27

28

29

30

31

32

33
34

35
36

37

38
39

4O

41

42

43

44

45

46

47

48

49

5O

PLA_Obj_vert_split_2 (a_cur, size, & a col, & a_cur);

PLA_Obj__horz_split 2 (b_cur, size, & b_row, & b_cur);

PLA_ObLset_orientation (a col, PLA_PROJ_ONTO COL);

PLA_Pmvector_create_conf_to (a_cur, PLA_PROJ_ONTO_COL,
PLA_ALL_COLS, size, & a col dup);

PLA_Copy (a col, a_col_dup);

PLA_Obj_horz_spUt_2 (a_col_d up, size, & a00_dup, & al0_dup);

eLA_Local_trsm (PLA_SIDE_LEFT, PLA_LOW TRIAN,

PLA NO TRANS, unit, one, a00_dup, brow)

PLA_Pmvector__create_conf_to (b_cur, PLA_PROJ_ONTO_ROW,
PLA_ALL_ROWS, size, & b_row_dup);

PLA_Copy (brow, b_row_dup);

PLA_Local_gemm (PLA NO TRANS, PLA NO TRANS, minus_one,
al0_dup, b_row_dup, one, b_cur);

PLA Obj_view_shift (a_cur, size, 0, 0, 0);

}

PLA_Obj_free (& a_cur);

PLA__ObLfree (& a_col);

PLA_Obj_free (& a_coi_dup);

PLA ObLfree (& a00_dup);

PLA ObLfree (& al0_dup);

PLA_ObLfree (& b_cur);

PLA_ObLfree (& brow);

PLA_Obj_free (& b_row_dup);

PLA_Obj_free (& minus_one);

101

51

1

!

}

PLA Obj_free (& one);

52

Figure 11 PLAPACK TRSM - LLNN Variant Parallel Implementation

102

4.3 Virtual Object Algorithms

The problems addressed in this research expand to a size which

exceeds the memory capabilities of the architecture. This situation is not

uncommon for parallel applications as the increase in performance permit

solutions of large systems before run time becomes prohibitively large.

Implementation of out-of-core (OOC) methods allow the examination of even

larger problems by viewing the disk as an additional layer in the memory

hierarchy. The problems associated with disk I/O traffic are analogous to the

local processor memory traffic and inter-processor communication problems

discussed previously. Not surprisingly, block algorithm techniques are the

best approach to minimizing the communication between the processors and

disk.

I/O specific issues which adversely effect performance must be

considered in the implementation of OOC methods. The primary factor

effecting I/O performance is the cost of accessing data located on disk. The

cost of accessing the disk is very expensive as compared to other

computational functions. Many networks and parallel machines are

configured to share a single disk between processors. The operating system's

ability to effectively manage the shared resource decreases with the number of

103

simultaneousrequests.Thedifficulties areabatedby minimizing the number

of I/O requestsin termsof bothnumberof accessesby a singleprocessorand

the number of processorssharing the resource. Additional benefits are

realized through the implementationof asynchronousI/O requests. On

architectureswhich support non-blocking disk I/O, computations and

interprocessorcommunicationsmayproceedconcurrentlywith the file system

operations.

The data distribution abstractionsin PLAPACK permit sharing of

resourcesin a quite natural way. On an architecturewhich sharesfile

resources,a singlerow or columnof processorsmaybe assignedto perform

the I/O for the entire group. The datais readinto/written from a projected

multivector existingon the row or columnof processors.The datamaythen

be communicatedto the rest of the processorthrough standardPLAPACK

communicationroutines. ConstrainingI/O to occuronasinglerow or column

of processorsreducestheamountof datawhich maybebroughtinto memory

at anyone time. However, largerobjectsmaybe filled by steppingthough

panelsof thematrix.

The structureof OOCalgorithmsareboundedby two limiting cases.

The f'n'st maximizes the overlap of computation and communication in an

effort to hide the cost of file I/O. A complex algorithm is required to manage

104

the asynchronous file traffic between many different data buffers. Also, the

allocation of memory to I/0 operations limits the available memory for linear

algebra operations thereby reducing performance. The second limiting case

maximizes the amount of memory available for linear algebra operations in an

effort to maximize the performance of the algorithm. No memory is available

for overlapping with I/O leaving the disk access cost completely exposed.

As part of this research, PLAPACK was modified to support OOC

operations. Block methods were used to develop the OOC algorithms

necessary to invert a symmetric matrix. The routines include a OOC Cholesky

factorization and two variants of the OOC TRSM.

4.3.1 PLAPACK Implementation

The extension of out-of-core functionality to PLAPACK requires the

development of PLAPACK virtual objects. The virtual object manages views

into objects whose data exists entirely within virtual data space, or more

simply, on disk. Global data spaces, or parallel RAM, attach to virtual objects

for the caching of data for parallel operations. The user manages the data

movement between the virtual space and the global space through a set of

virtual object I/O routines.

105

The PLAPACK object fully encapsulates the complexities of the out-

of-core implementation. PLAPACK parallel functionality and virtual

functionality exist within the same object structure. As a result, the

assumptions which govern the development of PLAPACK parallel algorithms

apply to the development of PLAPACK virtual object algorithms. For more

information on the virtual object implementation and the usage of the new

object methods, Appendix E describes the PLAPACK Virtual Object

infrastructure.

4.3.1 Cholesky Factorization

The virtual object Cholesky factorization implements the left-looking

variant of the algorithm as presented in Appendix F. The following

description of the parallel algorithm refers to Figure 12.

Lines 13-19

Line 20

Lines 23-31

Lines 29-32

Lines 33-44

Creates the multiscalar scale parameters required by the
BLAS function calls.

Initialize the matrix views to !matrix and e_matrtx. At
any point in the algorithm a_matrtx consists of the matrix
block .41.0 and A2,0. e_matriz consists of the matrix
blocks Al.t, ,41,2, ALl and A2'2. At this point in the
algorithm, the matrix resides entirely on disk.

Determine the size of matrix block Cd_a_which can exist
complete in parallel memory. If size is equal to zero, the
faetorization is complete. Otherwise, create views into the
appropriate matrix blocks.

Attach shadow space to the current diagonal block of
matrix C and read the data into parallel memory.

Proceeding from left to right, read into memory the blocks
of a__panel and update the current diagonal block of C.

106

Line 57

Lines 49-82

Lines 51-55

Lines 56-57

Lines 58-71

Lines 74-76

Lines 77-79

Lines 83

Perform the Cholesky factorization on the matrix block

Cdl,,eand write the results to disk.

Proceeding from top to bottom, update the subdiagonal
blocks in the current column.

Determine the size of matrix block C_na which can exist
complete in parallel memory. If size is equal to zero, the

update of the current column is complete. Otherwise,
create views into the appropriate matrix blocks.

Attach shadow space to the current subdiagonal block of

matrix C and read the data into parallel memory.

Proceeding from left to fight, read into memory the blocks
of a_panel and a_matrix_next to update the current

subdiagonal block of C.

Attach shadow space to the current diagonal block of

matrix C and read the data into parallel memory.
Alternatively, the diagonal block data could have

remained memory resident. A trade-off exists between
I/O costs and memory usage.

Update the current subdiagonal column block and write
the result to disk.

Adjust the views for the recursive application of the

algorithm.

107

I

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

#include "PLA.h"

int PLA_vCHOL_I (tnt uplo, PLA_Obj a)

int size, diag__size, top_size, left_size;

PLA._Template template = NULL;

PLA Obj one = NULL, minus_one = NULL,

a_panel ffiNULL, a_panel_cur = NULL, a_panel_next ffi
NULL,

a_matrix ffiNULL, a_matrix_next = NULL,

a cur = NULL, a_next ffiNULL,

c_diag = NULL, c_diag_cur = NULL,

c cur = NULL, c_panel = NULL, c_matrix ffiNULL;

PLA_Obj_template (a, & template);

PLA_Mscalar_create (MPI_DOUBLE, PLA_ALL_ROWS,

PLA_ALL_COLS, 1, 1, template, & one);

PLA ObLset_to__one (one);

PLA_Mscalar_create (MPI DOUBLE, PLA_ALL_ROWS,
PLA_ALL_COLS, 1, 1, template, & minus_one);

PLA_ObLset_to_minus_one (minus_one);

PLA_ObLvert_spHt_2 (a, 0, & a_done, & cmatrix);

while (TRUE)

PLA_vObLspHt_size (c_matrix, PLA_SIDE_LEFT, & left_size);

PLA_vObLspHt_size (c_matrix, PLA_SIDE TOP, & top_size);

if ((diag_size ffisize I min (left_size, top_size)) _ffi 0) break;

108

26

27

28

29

30

31

32

33

34

35

36

37
38

39

40

41
42

43

44

45

46

47

48

49

50

PLA_Obj_horzsplit_2 (a_matrix, size, & a_panel, & a_matrix);

PLA_Objjplit_4 (c_matrtx, size, size, & c_diag, PLA_DUMMY,
& c_panel, & c_matrix);

PLA Obj_view_all (c_diag, & c_diag_cur);

PLA_Obj_attachjhadow_conf to view (c_diag__cur);

PLA Read (c_diag__cur);

PLA_Obj_view_all (a_panel, & a__paneLnext);

while (TRUE)

{

PLA vObj_spHt_size (a__panel_next, PLA_SIDE_LEFT, & size);

if (size _ffi 0) break;

PLA_Obj_vert_spUL2 (a__panelnext, size, & a_paneLcur,
& a paneLnext);

PLA_Obj_attachshadow conf to view (a_paneLcur);

PLA Read (a_.paneLcur);

PLA_Syrk (PLA_LOW_TRIAN, PLA_NO_TRANS, minus one,

a_panel_cur, one, c__diag_cur);

}

PLA_Obj__free (& a_.paneLcur);

PLA_Chol (PLA_LOW_TRIAN, c_diag__cur);

PLA Write (c_diag..cur);

PLA_Obj_free (& c_diag_.eur);

PLA_Obj_vtew_all (Lmatrix, & a_matrtx_next);

while (TRUE)

{

109

51

52

53

54

55

56

57

58

59

6O

61

62

63

64

65

66

67

68

69

7O

71

72

73

74

75

PLA vObj_spHLsize (c_panel, PLA_SIDE_TOP, & size);

if (size == 0) break;

PLA Obj_vtew_all (a_panel, & a_paneLnext);

PLA_Obj_horz spilL2 (a_matrix_next, size, & a_next,
& a_matrix_next);

PLA_Obj_horz_spliL2 (c_panel, size, & c__cur, & c_panel);

PLA_Obj_attach__shadow_conf to view (c_cur);

PLA_Read (c_cur);

while (TRUE)

{

PLA_vObj_spliLsize (a__paneLnext, PLA SIDE_LEFT,
& size);

if (size == 0) break;

PLA_Obj._vert_spHt_2 (a__panel_next, size, & a__panel_cur,

& a_paneLnext);

PLA_Obj_vert_spHt_2 (a_next, size, & a_cur, & a_next);

PLA_ObLattach_shadow_conf_to_view (a_panel_cur);

PLA_Obj_ attach shadow_conf_to_view (a_cur);

PLA__Read (a__paneLcur);

PLA_Read (a_cur);

PLA_Gemm (PLA._NO_TRA.NS, PLA_TRANS, minus_one,

a_cur, a_panel_cur, one, e_cur);

}

PLA_Ob]_free (& a_.panel_cur);

PLA_Obj_free (& a_cur);

II0

76

77

78

79

80
81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

PLA Obj view_all (c_diag, & c_diag__cur);

PLA_Obj_attach_shadow_conf to vtew (c_diag__cur);

PLA_Read (c_diag_cur);

PLA_Trsm (PLA_SIDE_RIGHT, PLA LOW_TRIAN,

PLA TRANS, PLA_NONUNIT_DIAG, one, c_diag__cur,
c_cur);

PLA_Write (c cur);

PLA Obj_free (& c_diag_cur);

PLA_Obj_free (& c_cur);

}

PLA Obj_view_shift (amatrix, 0, 0, diag_size, 0);

}

PLA_Obj_free (& one);

PLA Obj_free (& minus.one);

PLA Obj_free (& a_panel);

PLA_Obj_free (& a_panelcur);

PLA_Obj_free (& a_panel_next);

PLA_Obj_free (& a_matrix);

PLA_Obj_free (& a_matrix_next);

PLA_Obj free (& a_cur);

PLA_Obj_free (& a_next);

PLA_Obj_free (& c._diag);

PLA Obj_free (& c_diag_¢ur);

PLA_Obj_free (& c_cur);

Ill

100

101

102
I}

PLA_Objjree (& c_panel);

PLA_Obj free (& c_matrix);

Figure 12 PLAPACK Cholesky - Virtual Object Implementation

112

4.3.2 Triangular Solve Multiple RHS

The parallel triangular solve with multiple right-hand-sides

implements a variation of the algorithm presented in Appendix G. The

following description of the LLNN variant refers to Figure 13. The LLTN

variant possess a similar implementation.

Lines 13-19

Lines 20-24

Lines 27-34

Lines 39-58

Lines 64-73

Creates the multiscalar scale parameters required by the
BLAS function calls.

Initializes the views into the matrix objects. The

algorithm proceeds by first computing the contribution to
the row panel B0 of the previously solved elements in the
matrix above Bo. The update of Bo based on the diagonal
block A occurs at the end of the algorithm. The algorithm

presented in the appendix computes the update first and

then applies the contribution of the update to the
remainder of the matrix.

Determine the length of matrix row panel//panel which can
completely exist in parallel memory. If size is equal to

zero, the operation is complete. Otherwise, create views

into the appropriate matrix blocks.

Compute the contribution of the previous solutions on the
current row panel orB.

Update the current row panel of B using the current

diagonal block of A.

113

3

4
5

6

7

8

9

10

11
12

13

14
15

16

17

18
19

20
21

22

23

24

25

26

int PLA_vTrsm_lln (int diag, PLA Obj alpha, PLA_Obj a, PLA Obj b)

int top_size, left_size, size;

PLA_Obj a_matrix ._ NULL, a__panel _ NULL, a_diag I NULL, a_cur -_
NULL,

b_matrix m NULL, b_panel _- NULL,

b_done _ NULL, bdonematrix -- NULL,

b_panekcur ---NULL, b_paneLnext -- NULL,

b_cur -- NULL, b_next -- NULL,

one -- NULL, minus one over_alpha -- NULL;

PLA_Mscalar_create_conf_to (alpha, PLA_ALL_ROWS,
PLA_ALL_COLS, & one);

PLA Obj. set to one (one);

PLA_Mscalar_create_conf_to (alpha, PLA_ALL_ROWS,
PLA_ALL__COLS, & minus_one_over_alpha);

PLA_Obj set to minus_one (minus one_over alpha);

PLAJnv_scal (alpha, minus_one over_alpha);

PLA_Obj view (a, PLA_DIM_ALL, 0, PLA_ALIGN_FIRST,
PLA_ALIGN_FIRST, & a_matrtx);

PLA_Obj_view (b, 0, PLA_DIM_ALL, PLA_ALIGN_ FIRST,
PLA_ALIGN_FIRST, & b_done);

PLA_Obj--view_all (b, & b_matrix);

while (TRUE)

PLA_vObj_split_size (a__matrix, PLA_SIDE_TOP, & size);

ff (size ---- 0) break;

114

27

28

29

30

31

32

33

34

35

36

37

38

39

40
41

42

43

44

45

46

47

48
49

50

51

PLA Obj_.view_shlft (a_matrix, 0, 0, size, 0);

PLA_Obj_horz_spfiL2 (amatrix, size, & a_panel, & a_matrix);

PLA Obj_ horz_spfit_2 (b_matrix, size, & b_panel, & b_matrix);

PLA_Obj_verLsplit2 (a_panel, -size, & a_panel, & a_dlag);

PLA_Obj_view_all (b_done, & b_done_matrix);

PLA_Obj_view_shlft (b_done, 0, 0, 0, size);

/* while the view shift may seem out of place, it is necessary for the next
iteration */

while (TRUE)

PLA vObj_spliLsize (a_panel, PLA_SIDE_LEFT, & size);

if (size _ffi 0) break;

PLA_Obj_verLspHL2 (a_panel, size, & a_cur, & a_panel);

PLA_Obj_horz_spliL2 (b_done_matrix, size, & b_next,
& b_done_matrix);

PLA_Obj_attach_shadow_conf_to_view (a_cur);

PLA Read (a_cur);

PLA_Obj_view all (b_panel, & b_panel_next);

while (TRUE)

PLA vObj_spliLsize (b_next, PLA_SIDE_LEFT, & size);

PLA_Obj__vert_spHL2 (b_next, size, & b_cur, & b_next);

PLA_Obj_vert_split_2 (b_panelnext, size, & b__panel_cur,
& b__paneLnext);

PLA_Obj__attaeh_shadow_conf_to_vtew (b_cur);

PLA_Obj__attach__shadow_conf_to_vlew (b._paneLcur);

115

52

53

54
55

56

57

58

59

60

61

62

63

64

65

66

67

68

69
70

71

72

73

74

75

PLA_Read (b cur);

PLA_Read (b_panel_cur);

PLA_Gemm (PLA NO_TRANS, PLA_NO TRANS,

minus_one over alpha, a_cur, b_cur, one, b_panel_cur);

PLA_Write (b_panelcurrent);

}

PLA_ObLfree (& b_cur);

PLA_Obj_free (& b_panel_cur);

PLA_Obj_free (& a_cur);

}

PLA_Obj__attach_shadow conf to view (a_diag);

PLA_Read (a_diag);

while (TRUE)

PLA_vObj_split_size (b_panel, PLA_SIDE_LEFT, & size);

PLA_Obj_vert__spHt_2 (b__panel, size, & b_cur, & b_panel);

PLA_Obj_attach_shadow_conf_to_vtew (b_cur);

PLA Read (b_cur);

PLA_Trsm (PLA_SIDE_LEFT, PLA_LOW_TRIAN,
PLA_NO_TRANS, diag, alpha, a_diag, b_cur);

PLA_Write (b_cur);

PLA ObLfree (& a_diag);

PLA_ObLfree (& b_cur);

116

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

PLA_Obj_free (& a_matrix);

PLA_Obj_free (& a_panel);

PLA Objfree (& a diag);

PLA Obj_free (& a_cur);

PLA_Obj_free (& b_matrix);

PLA_ObjJree (& b_panel);

PLA_Obj_free (& b_done);

PLA Obj_free (& b_done_matrix);

PLA_ObjJree (& b_panel_cur);

PLA Objjree (& b_panelnext);

PLA_Obj_free (& b_cur);

PLA_Objfree (& b_next);

PLA_Obj_free (& one);

PLA_Objfree (& minus_one_over_alpha);

return (PLA_SUCCESS);

Figure 13 PLAPACK TRSM - LLTN Variant Virtual Object

Implementation

117

4. 4 Numerical Integration

The issues of numerical integration concern the relative cost between

the physical system model and the accumulation operation. Allowing I to be

the maximum degree and order of the geopotential expansion, the

accumulation increases according to ,9(14). (The symmetric rank-k operation

requires mn 2 floating point operations where m corresponds to the number of

observations and n corresponds to the number of gravity field parameters, or

(1 + 1)2 .) The observation model costs increase at only ,9(l _) under the same

conditions. (The force model requires the evaluation of the Legendre

associated functions, a recursion over 8(l 2) elements, and the spherical

harmonic evaluation, a summation over 8(/2) terms. The number of first order

differential equations to be integrated is 42+6(/+1) 2, or 8(12).) On serial

architectures the cost of the accumulation quickly dominates the cost of the

algorithm [Bettadpur 1993].

The implementation on parallel architectures requires an examination

of the distribution of each component's computations of over the processor

army. For example, given a problem defined by l, the wall clock time required

118

to generatethe observationsandthe wall clock time requiredto accumulate

theobservationswouldbeexpressedby Equation(45).

Tacclt_nl _---

Robsgeneobsgen

a(tL)
R acorn Pac_,ign, I

where R specifies the per processor speed of the operation and the P specifies

the number of processors over which the operations are distributed. The

percentage of time spent performing the observation generation is expressed in

Equation (46).

1 R,,¢,.,,,,P,,¢,.,,,,

F°t"g_" = ,9(12_x) RobsgenPobsgen + Raceurneaccum

The fraction of the time spent performing observation equation

evaluations decreases with g(l 2) if the problem size is permitted to grow

without any changes in the number of processors. However, if only the

accumulation is spread over and increasing number of processors without any

loss of efficiency, the fraction of the time spent performing observation

evaluations increases to one. The observation generation functions must be

effectively distributed to avoid placing a speed-up bound on the combined

algorithm.

(45)

(46)

119

Theinvestigationof parallelizingthenumericalintegrationfocusedon

two approaches. The first partitioned the systemof equationsat natural

boundaries,andthesecondpartitionedtheintervalof integration.Neitherwas

foundto becompletelysatisfactoryfor acostlyobservationmodel.

Naturalpartitions in the systemof first orderequationsare identified

accordingto thedecouplingof equationsaboveandbelow thepartition point.

Assumingperturbedtwo-bodymotion, one suchbreak occursbetweenthe

equationsof different satellites. The complete integrationvector may be

distributed acrossthe processorarray such that the partition boundaries

correspondto the naturalbreaks in the differential equations. Since the

equationsarenot coupledbetweenbreaks,no inter-processorcommunication

is required to completethe integration. Most problems,however,do not

examinethe trajectoriesof an ever increasingnumberof satellites as the

numberof processorsis increased.Oncethe numberof processorsexceeds

the numberof satellites,no additionalparallelismmay be obtained,and the

algorithmiccostimbalanceasdescribedpreviouslywill occur.

A secondmethodof decompositionoccursby partitioning along the

intervalof integration.Eachprocessoris responsiblefor propagatingtheorbit

andgeneratingobservationequationsalong thedesignatedsub-interval. The

load imbalanceproblemsassociatedwith the previousmethoddo not occur.

120

However,an overheadcost is incurredfrom the propagationof the satellite

from the globalinitial epochto the local sub-intervalepochandthe restartof

the integration at the sub-intervalepoch. This method of decomposition

requiresthat enoughmemoryexists on the local processorto perform the

integrationfor all satellitesin thephysicalsystem.

121

5. Software Design

Application development for this research requires the integration of

serial and parallel components into a single sol,are package. An improper

interface between components creates bottlenecks in parallel performance.

The implementation methods which lead to high performance algorithms

result from experimentation and iteration of design. The examination of the

gradiometer and GPS application requirements yields a generalized expression

of the batch least squares algorithm for distributed memory parallel

architectures.

5.1 Computational Constraints

The primary constraints on application performance involve memory

capacity and processing speed. Each constraint affects the performance of

each application scenario in a different manner. Since the computational cost

of modeling the gradiometer is relatively small, the accumulation cost

dominates the application. Wall-clock cost restrictions on the generation of

gradiometer normal equations are effectively non-existent. Any gradiometer

problem which fully resides in memory may be processed in a reasonable

amount of time. The computational cost of processing GPS information is

significantly larger and suffers from the inability to effectively parallelize

122

numerical integration operations. The amount of geopotential information

recovered from GPS data is primarily constrained by the wall-clock cost of the

operation.

The performance characteristics of a distributed memory architecture,

both in terms of memory and speed, vary with the number of processors. The

analysis should be scaled according to the available number of processors to

most effectively utilize system resources. Table 5 presents the approximate

memory usage per processor for the different application components. The

memory usage of the accumulation grows with the forth power of the

maximum gravity field degree and dominates the overall memory usage. The

memory usage of the other application components grow with the square of

the maximum gravity field degree.

Operation

Normal Equation Accumulation

Memory UsageperProcessor(bytes)

8[(l+ 1) 4 +m_(l+ 1) z]

Gravity Field (Potential, Force and Gradient) 1 12(l + 2Xl + 1)

ABFS Numerical Integration 8,.._ [(42 +6(l + 1)2 X,o.# + 3)+ 10'

Gradiometer Observation 8(l + 1) 2

Satellite Tracking Observation 32(l + 1) 2

Table 5 Memory Requirements for Application Algorithms

123

Table 6 presents the operation counts for the different application

components. Dense matrix operations are ,9(n 3) where n is the dimension of

the matrix. Since n = (l + 1)z for the gravity field problem (See Appendix D),

the operations become ,9(l 6) where l is the maximum degree of the spherical

harmonic expansion. The observation and dynamic model algorithms consist

primarily of summations over the gravity field coefficients requiring ,9(l 2)

operations. The processing efficiency varies between the different algorithms.

The linear algebra operations execute optimized subprograms which approach

the expected sustained performance of the architecture. The observation

operations implement compiler optimized code which achieve only a fraction

(5-10%) of the performance capability.

Operation [

Accumulation (SYRK)

Number of Operations

m(l + 1)4

Claolesky 1(l + 1)6

Matrix Inversion (TRSM) 2(l + 1) 6

Gradiometer Observation 116 l 2

Satellite Tracking Observation 12(l + 1) _

Table 6 Computational Cost for Application Algorithms

124

The operationcount for numerical integration was not calculated.

Instead,empiricalmodelsbasedon theintegrationof the singlesatellitestate

and statetransitionmatrix over an arc of one day were developedand the

resultsarepresentedin Figure14. A seventhorderAdams-Bashforth-Moulton

integrationmethodwith meshsizesof 30seconds,45 secondsand60 seconds

(curves top to bottom) are shown. The startingcost associatedwith the

multistepmethodsis includedin the integrationcost.

A

350

300

250

200

150

100

50

0

0

Integration Wallclock Time for a Single Satellite and State

Transition over a Single Day Arc Length

/
/

15 30 45 60 75 90

Gravity Field Degree

Figure 14 Computational Cost for Numerical Integration

5.2 Parallel Batch Estimation Algorithm

The serial batch estimation algorithm requires restructuring for use on

distributed memory parallel architectures. For large numbers of estimated

parameters, the normal matrix is too large to exist completely on a single

125

processor.Theaccumulation of information into the distributed matrix should

exploit the performance capabilities of the multiple processors. Also, as

mentioned in the previous chapter, the observation modeling process must

effectively parallelize in order to fully realize the performance gain.

Implementation of an effective batch estimator on a distributed memory

architecture requires the development

estimation algorithm. The following

components are memory resident.

of a generalized parallel batch

discussion assumes all system

The batch algorithm may be partitioned according to the batch object

methods and the physical system modeling methods. The batch object

methods primarily consist of linear algebra operations and account for the vast

majority of floating point operations. Parallel linear algebra is a well-

understood process which can be implemented with a high degree of

efficiency. Physical system models center on the implementation of the

numerical integration process. The previous chapter described two

approaches to parallelizing numerical integration. Of the two approaches,

partitioning along the interval of integration promises the best scalability.

The parallel batch paradigm used the above partitioning to decompose

functionality into serial and parallel executing components. The observations

are generated in a data-parallel manner with each processor computing the

126

partialscorrespondingto a differentintervalof integration. Theaccumulation

occursin awork-parallelmannerwith all processorupdatingthesamenormal

matrix.

Two variants were consideredin the first implementations. An

integrated method required each processor to participate in both the

observation generationand the accumulation operations. A partitioned

method groupedthe processorsaccordingto function. Eachmethodology

yieldedadvantagesanddisadvantages.Theintegratedmethodexhibitedbetter

load balancingcharacteristicsdue to the dataparallel nature of the work

sharing. The necessarystorageof modelsimulationcomponentslimited the

amountof memorywhich couldbededicatedto the linearsystemoperations.

Thepartitionedmethodpermittedanexpansionof theproblemsize,but was

proneto loadimbalance.Incorrectsizingof theprocessorgroupsallows one

groupto completesoonerthanthe other. The integratedmethodwaschosen

dueto its ability to providereliablehighperformance

Parallel accumulationrequires the cachingof a number of partial

arraysbeforeperformingan updateof the normal matrix. To facilitate the

caching,thepartial arraysarecopiedinto the columnsof a distributedbatch

matrix The integratedapproach requires each processor to simultaneously

generate different partial arrays. The method by which partial arrays are

127

assigned to unique columns leads to two different expressions of the batch

algorithm. The static assignment of partials allocates the partials to the

columns, either explicitly or implicitly, at the beginning of each batch. The

dynamic assignment of partials allocates columns to the partials on a first

come, first serve basis though queries to an index server. The dynamic

assignment method places no assumptions on the ordering of partials allowing

operations such as on-the-fly observation editing.

The generalized data parallel batch algorithm with dynamic

assignment is presented in Figure 15. The generalized data parallel batch

algorithm with static assignment is presented in Figure 16. An explanation of

each algorithm follows the Figures.

Initialize application components
While (global observations remain)

While (local observations remain)

Read next local observation(s) at epoch
Integrate reference trajectory to epoch
Form local observation equations at epoch

While (observation(s) remain at epoch)
While (global partial batch is full) Accumulate
Send observation equation to global batch matrix

End while

Increment to next epoch
if (local processing completed) Send completion signal to all processors

End while

if (local processing completed) Accumulate
End while

Solve normal equations

Figure 15 Data Parallel Batch Algorithm with Dynamic Assignment

128

Theinitializationprocessof thedynamicassignmentalgorithmcreates

the necessaryphysical and

observationsto the processors.

distributionof theobservations.

mathematical objects and distributes the

No assumptionsare placedon the global

The outer loop continueswhile observationsexist to be processed.

Eachprocessortrackstheavailabilityof globalobservationsthroughthe index

server. Once a processor has completed its assigned observations, the

processor sends a signal to the other processors. Only after a completion

signal has been received from all the other processors will the local processor

be permitted to exit the outer loop.

The inner loop of the dynamic assignment algorithm is similar to the

serial batch algorithm. The accumulation operation is replaced by a query to

the index server and the communication of the local observation equation to

the global batch matrix. The index server allocates the column indices on a

first come, first serve basis. If the matrix is full, an accumulation operation

occurs. To guarantee progress of the algorithm, multiple observations at a

single epoch must be processed one at a time. Otherwise, invalid colunms

may be assigned resulting in either a core dump or application deadlock.

129

iInitialize application components
While (global observations remain)

Read batch of observations
Initialize state at initial epoch
While (local observations remain)

Integrate reference trajectory to epoch
Form local observation equations at epoch
Send observation equation to global partial batch
Increment to next local epoch

End while
Accumulate

End while

Solve normal equations

Figure 16 Data Parallel Batch Algorithm with Static Assignment

The initialization of the static assignment algorithm creates the

necessary physical and mathematical objects. Distribution of the observations

and column indices occurs at the top of the outer loop. The local processor

exits the outer loop after all observations have been processed.

serial

The inner loop of the static assignment algorithm is similar to the

batch algorithm. The accumulation operation is replaced by the

communication of the current observation equation to the global batch matrix.

After all local observation in the current batch have been processed, an

accumulation event occurs.

5.3 Batch Algorithm Implementations

Both variants of the data paraUel batch algorithm produced successful

gradiometer implementations. The static assignment algorithm performed

130

slightly better. However, neither variants of the algorithm produced a

satisfactory GPS implementation. The dynamic assignment variant suffered

from severe load imbalances. The index server was implemented using a

master-slave approach directing all queries to a single processor. Individual

processors incurred large idle time while waiting for responses from the index

server. The server processor could not answer the index request until the

completion of local physical system calculations. The static assignment

variant fell prey to the inherent serialization of the numerical integration.

Since a batch of observations is not widely separated in time, many processors

shared the same integration sub-interval either during the processing of

observations or in the initialization of its own sub-interval. The dynamic

modeling proceeded in an essentially serial manner and produced bottleneck

in the overall algorithm.

The GPS application was redesigned using the second parallelization

strategy for numerical integration. A single (3PS satellite and the gradiometer

satellite was assigned to each processor, and a serial batch algorithm was used

to accumulate the observations associated with the high-low satellite pair. The

computations proceeded perfectly in parallel over each subarc with the

exception of duplicated work in the integration of the gradiometer satellite.

The processors were synchronized in between subarcs to merge subarc

131

information. The normal equationson eachprocessorwere mergedat the

completion of the global arc. The implementationof the serial batch

algorithmrestrictedtheproblemsize to that which could be containedon a

singleprocessor. While not desirablefor generalpurposeuse, the method

produced results satisfactory for the completion of this research.

132

6. Error Analysis and Results

A gradiometer error analysis similar to that presented by Colombo will

be conducted [Colombo, 1989]. The method requires the inversion of the

normal matrix generated during a gradiometer mission simulation. The

diagonal elements of the inverted normal matrix represent the a posteriori

variance of the estimated potential coefficients. The analysis ignores the right-

hand-side of the observation equations in order to reduce computational cost

and avoid the use of real or simulated observations. In this respect, the

analysis is not a true simulation study; however, the reduced cost permits the

examination of a broader range of satellite and instrument configurations in

the search of an optimal mission scenario, Analyses of this type are prevalent

in the literature [Colombo, 1989; Schrama, 1991; Koop, 1993; Visser, 1994].

The work presented here contributes to previous research through the

implementation of single point computations, and therefore added robustness,

to the analysis.

The case studies demonstrate the effectiveness of parallel methods

applied to the gravity field problem and the capability to perform a rigorous

solution of the high resolution geopotential from satellite gradiometer and

GPS observations. The information recovered from a satellite gradiometer

mission requires the use of parallel methods in the formation of a batch least

133

squaresestimate. The complexity of the GPS dynamic model warrants

investigation of parallel numerical integration techniques. Besides illustrating

the successful implementation of parallel methods, the science results verify

previous error analyses which used approximate grid computation methods

and provide insight to the capabilities of rigorous analysis for the high degree

and order geopotential.

6.1 Observation Constraints

The uniform solution of the geopotential requires global coverage of

the Earth's surface. Each coefficient in the geopotential expansion may be

expressed as an integral of an observed gravity signal over the surface of the

Earth [Colombo, 1981]. Incomplete coverage of the Earth's surface removes

the contributions of omitted geographical areas and leads to errors in the

coefficients. The only satellite trajectory which can sample the entirety of the

Earth's surface is a polar orbit. Gradient observations collected along a polar

orbit provides the best information about the geopotential.

The polar orbit, however, may not satisfy satellite specific mission

requirements, specifically power subsystem requirements, due to its changing

orientation with respect to the sun. Satellites which generate power from solar

panels must spend a significant portion of the orbit exposed to the sun. A

134

common techniqueto maximize exposureof the satellite to the sun is to

exploit the oblateness of the Earth in order to maintain a perpendicular

orientation between the satellite orbit plane and the Earth-Sun radius. The

resulting sun synchronous orbit possesses a non-polar inclination. Satellites

located in non-polar orbits cannot collect observations within geographical

regions centered at the poles. The size of the geographical region within the

polar gaps, and therefore the errors introduced into the geopotential solution,

depends on the inclination of the orbit.

The size of the orbit's semi-major axis results from a trade-off between

the strength of the gravity signal and the surface drag effects on the satellite.

The strength of the radial gravity gradient observable is proportional to the

cube of the satellite radius and decreases rapidly with increasing altitude. The

strongest gradient signals occur in the lowest orbits. However, drag effects

dominate satellite motion in low altitude orbits. The drag effects limit the

lifespan of the satellite and degrade the quality of the observation. An

acceptable range of altitudes for satellite gradiometers is approximately 250

km to 300 kin.

The spatial resolution of the observations also effects the quality of the

geopotential estimate. The sampling theorem dictates the necessary

observation spacing according to the spatial frequency of the gravity field

135

signal. The shortest spatial wavelength harmonic associated with a degree 1

coefficient is At 360
=--T-degrees. According to the sampling theorem, the

unique resolution of the observed signal requires sampling at twice its

frequency or greater. For the gravity field harmonic of degree 1, the

observation spatial resolution in both longitude and latitude must be A s = 18_.._0
l

degrees or less. A summary of sampling resolutions for various spherical

harmonic expansion degrees is presented in Table 7.

Expansion
Degree

2

Sampling Resolution

(de_'ees)
90.

4 45.
12 15.
30 6.0
60 3.0
90 2.0
120 1.5
180 1.0

Table 7 Required Spatial Resolution for Gradiometer Observations

6.2 Orbit Design

The satellite gradiometer travels a trajectory with a repeating ground

track. The repeating ground track orbit provides uniform coverage of the

Earth's surface and allows satellites to visit the same geographical locations

136

once every repeat interval. Over time, the series of measurements provide the

ability to track temporal changes at that location. The desired surface

coverage resolution defines the repeat orbit parameters. The coverage

resolution significantly affects the resolution of the recovered gravity field.

Repeat ground track orbits are developed according to the iterative

solution to Lagrange's planetary equations. The mean perttu-bations of the

non-spherical geopotential define the equations of the osculating orbit. Dr.

Srinivas Bettadpur of the University of Texas Center for Space Research

(UT/CSR) provided the orbit design tool used in this research. The different

gradiometer mission scenarios required the development of two repeat ground

track orbits. A polar orbit guaranteed global coverage for the mission. A sun

synchronous orbit left polar gaps in the coverage. A coverage resolution

capable of recovering a degree and order 360 gravity field defined the design

criteria for the repeat orbit.

The sampling interval requires that the spacing between ascending

180
ground tracks must be As = _ = 0.5 degrees or less to insure observability

360

of a degree and order 360 gravity field. The spacing produces a repeat cycle

which consists of 720 revolutions. At an initial altitude of 275 km in a

circular orbit and a mean motion of 1.164x10 -3 radians per second, a 45 day

137

repeatperiod is produced. Initial guesses for polar and sun synchronous orbits

were input into the design tool described above. The converged orbits for the

polar and sun synchronous orbits are presented in Table 8.

Polar

249.71 kmAltitude

Inclination 90.1 degrees 96.6 degrees

revolutions 721 721

Sun Synchronous

261.98 km

Table 8 Satellite Gradiometer Orbit Parameters

6.3 Problem Scaling

The resolution of the geopotential to be recovered depends on the

performance characteristics of the computational platform. The available

memory limits the linear system size and the number of gravity field

coefficients which may be estimated. As discussed previously, observations

with large dynamic model costs also pressure wall-clock constraints. Both the

size of the gravity field and the number of observations may be reduced to

bring the application wall-clock cost within specific constraints.

The limits imposed by the sampling theorem constrain the adjustment

of the observation sampling interval. As with the longitudinal spacing, the

138

latitudinalspacingof theobservationsmustbe A' =
180

l
degrees or less. For

a satellite in a near-polar orbit, one observation must occur within every

As degree interval of arc traveled. Assuming a constant angular velocity of

360
co = _ degrees per second, the minimum required sampling interval

TP

_Y
equates to fit =- Table 9 presents the sampling interval and the

co

approximate number of observations for the satellite gradiometer and GPS

observation datatype.

Gradiometer

GPS

Sampling Interval

5 seconds

15seconds

Number of Observations

777,600

1,400,000

Table 9 Summary of Sampling Quantities for Case Study

The Cray T3E distributed-memory parallel architecture located at the

University of Texas at Austin provides the baseline for problem scaling. The

machine possesses 44 DEC Alpha EV6 RISC processors of which a maximum

of 32 processors execute during a single production run. Each processor

contains 128 Mbytes of local memory and rates 600 Megaflops peak

performance.

performance.

Vendor optimized subprograms provide high single-processor

Using optimized BLAS, parallel accumulation and linear

139

system solve operations easily sustain 200 Megaflops per processor

performance.

The available memory on 32 processors of the T3E determined the

gradiometer application size. The two components using the largest amount

of memory were the normal matrix

observations prior to the accumulation.

and a batch matrix that cached

An empirical determination of the

maximum problem size demonstrated a capability to process a geopotential

model to degree and order 110. The normal matrix uses approximately 40

Mbytes per processor memory and the batch matrix uses approximately 20

Mbytes per processor memory. The dynamic model, temporary message

buffers and other operating system functions use the remainder of memory.

The available memory on a single processor of the T3E determined the

GPS application size. As with the gradiometer, the two components using the

largest amount of memory are the normal matrix and batch matrix. The

normal matrix corresponding to a degree and order 50 geopotential model

requires 54 Mbytes of memory.

140

6.4 Case Studies

Three parallel applications collectively perform the geopotential error

analysis. The processing of the polar and sun synchronous orbits proceed

similarly.

The first application, gradlo, generates the normal equations for the

satellite gradiometer observable. Batch queue time restrictions require the

partitioning of the 45 day arc into three 15 day arcs. The a priori variance on

the radial gravity gradients is 10 3 Eotvos (10 12 s2). Each job executes on 32

processors. The normal matrix accumulation is entirely memory resident. A

single normal matrix file structure is created for each 15 day integration

interval. PLAPACK virtual object I/O routines facilitate the copying of

normal matrix data to disk.

Table 10 and Table 11 present the gradlo application performance for

the polar and sun synchronous orbit solutions. The figures reflect the

performance of the accumulation and the overall application. The wall clock

time was computed by summing the execution time for all three 15 day arcs.

The timings illustrate the dominance of the accumulation costs as a fraction of

the total cost of the algorithm. The timings also illustrate the ability to

achieve high performance for a real POD application.

141

Application

Accumulation

Wall Clock Time (seconds)

21,684.7

18,239.8

Efficiency (Mflops/PE)

170.1

202.2

Table 10 gradio Application Performance for Polar Orbit

Application

Accumulation

Wall Clock Time (seconds)

21,696.1

18,255.6

Efficiency (Mflops/PE)

170.0

202.1

Table 11 gradio Application Performance for Sun Synchronous Orbit

GPS

The second application, gps,

tracking observable. Batch

generates the normal equations for the

queue time restrictions required the

partitioning of the 45 day arc into three 15 day arcs. The a priori variance on

the range observable is 5 mm. Each job executes 25 processors with one high-

low satellite pair allocated to each processor. The processing of the normal

matrix is entirely memory resident. A single normal matrix disk file is created

for each 15 day integration interval. Standard C I/O routines copy the normal

matrix to disk. Utility routines redistribute the data into a form suitable for

PLAPACK virtual objects.

Table 12 and Table 13 present the _s application performance for the

polar and sun synchronous orbit solutions. The figures reflect the

142

performance of the accumulation and the overall application. The wall clock

time was computed by summing the execution time for all three 15 day arcs.

The timings illustrate the dominance of the dynamic modeling cost relative to

the accumulation for an the GPS problem.

I Wall Clock Time Efficiency (Mflops/PE)(seconds)

Application 18,008.4 21.9

Accumulation 4,942.6 79.8

Table 12 gps Application Performance for Polar Orbit

Application

Accumulation

Wall Clock Time (seconds)

18,055.3

4,990.2

Efficiency (Mflops/PE)

21.9

79.1

Table 13 gps Application Performance for Sun Synchronous Orbit

The last application, xena, implements

system solver using PLAPACK virtual objects.

general out-of-core linear

The application merges an

arbitrary number of matrices and performs the matrix inversion, xena's input

consists of a list of filenames and corresponding matrix dimensions. The

input data file must exist in a PLAPACK I/O format. For this case study, xena

summed and inverted the normal matrices corresponding to the gradiometer

only, GPS only and the combination solution.

143

Table 14 and Table 15 present the xena application performance for the

polar and sun synchronous orbit solutions. The figures reflect the

performance of the gradiometer only solution, but the combination solution

performance is similar. The timings illustrate the good performance of the

PLAPACK virtual object methods.

Total

Cholesky 219.7

Wall Clock Time (seconds)

1784

Inversion 911.9

Efficiency (Mflops/PE)

76.4

88.7

128.2

Table 14 xena Application Performance for Polar Orbit

Total

Wall Clock Time (seconds)

1759

Efficiency (Mflops/PE)

77.5

Cholesky 218.2 89.3

Inversion 930.7 125.6

Table 15 xena Application Performance for Sun Synchronous Orbit

144

6.4.1Polar Orbit Solutions

Figure 17 and Figure 18 presents the error degree variance for the polar

orbit solutions. The gradiometer only solution possesses greater uncertainty

for the lower degree coefficients. The GPS only solution possesses greater

uncertainty for the higher degree coefficients. The combination solution

receives the best characteristics of both datatypes. The combination solution,

however, does not remain completely under the GPS solution at the low

degrees. Also, a discontinuity exists on the combination solution variance

triangle plot in Figure 18. Optimal weighting strategies for combining the two

datatypes may provide a possible solution for both anomalies.

I.OOE-07

1.00E-08

Error Degree Variance for Polar Orbit Solution

• B"_
• *¢'

1.00E-09

f
I.OOE-11 -- -- -- Gradio

=r
.... OPS

1.00E-12 "
1.00E-13

0 15 30 45 60 75 90 105 120

Gravity Field Degree

Figure 17 Error Degree Variance for Polar Orbit Solution

145

Figure 19 presents the geoid height variance for the polar orbit

solution. The gradiometer only solution produces a mean geoid height error of

25 millimeters. The GPS only solution produces a larger mean geoid height

error of 45 millimeters. The combination solution produces a significantly

improved mean geoid height error of 13 millimeters due to the improvement

in the lower order coefficient uncertainty. The cause of the spots in the GPS

geoid height variance plot is unknown.

146

Figure 18. Coefficient Variances for Polar Orbit Solution

(see color plate on following page)

147

Formal

I00

Variances of Normalized GeopoLenLial Coefficients

Polar Orbit Solutions

Gradiometer Only -8

50

I00

50

I00

5O

-I00 -_50

-100 -50

0 50 lOO -13

GPS Only -B

0 50 I00 -13

Combined Solution
-.8

,=tO0 -50 0 50 100
--13

-13 -t2 -ll -10

Common [_g af Variance

-.9 -.B

Figure 19. Geoid Height Variance for Polar Orbit Solution

(see color plate on following page)

148

9O

Geoid Height. Variances
Polar Orbit SoluLions

Gradiometer Only
0.100000

90

9O

90

180

GPS Only

IBO

Combined Solution

270 360 0.00000

0.100000

O. l0oooo

.-90

0 90 180 ;_70 360 (1.00000

0.0_ 004 0,06

(;eoid tteigh[(met, ers}

0.0_ 0.1

6.4.2 Sun Synchronous Orbit Solutions

Figure 20 and Figure 21 present the error degree variance for the sun

synchronous orbit solutions. The gradiometer only solution possesses greater

uncertainty across the range of coefficients due to the loss of information at

the poles. The high variance along the zonal coefficients as seen in Figure 21

further illustrates the deficiency. The GPS only solution is similar to the polar

orbit solution. The combination solution illustrates the ability to incorporate

the GPS observability of the zonal coefficients into the gradiometer solutions.

The error degree variance of the combination solution is almost identical to

the polar solution. However, deficiencies still exist in the zonal coefficients as

seen in the variance triangle plot.

Error Degree Variance for Sun Synchronous Orbit

Solution

1.00E-07

1.00E-08

1.00E-12

1.00E-13

1.00E-09 j o
C

_" l.OOF.e-11 C_dio
.... GPS

_ C_bine

T r-"

0 15 30 45 60 75 90 105 120

Gravity Field Degree

Figure 20 Error Degree Variance for Sun Synchronous Orbit Solution

149

Figure22 presentsthe geoidheightvariancefor the sunsynchronous

orbit solution. The gradiometeronly solution's inability to resolvethe zonal

coefficientsproducesanextrememeangeoidheighterrorof 224 millimeters.

The GPS only solution producesa larger mean geoid height error of 51

millimeters. The combinationsolution producesa significantly improved

meangeoidheighterrorof 17millimetersfurther illustrating thenecessityto

incorporateGPStracking informationinto the sunsynchronousgradiometer

solution. The causeof the streak in the GPSgeoidheightvarianceplot is

unknown.

150

Figure 21. Coefficient Variances for Sun Synchronous Orbit Solution

(see color plate on following page)

151

Formal Variances of Normalized ', ' " ""Geopotentlal ,.oefflctents
Sun Synchronous Orbit Solutions

Gradiometer Only
-8

100

5o

Io0

5O

l O0

- 100 ,-50 0 50 100 -- 13

GPS Only

- 100 .-50 0 50 tO0 - 13

Combined Solution
-8

/
/

/

f

-13 -12 "-ll -10 -9 -B

Common Lo K of V_riunc,t

Figure 22. Geoid Height Variance for Sun Synchronous Orbit Solution

(see color plate on following page)

152

Figure 22 Geoid Height Variance for Polar Orbit Solution

152

9O

.-90

9O

-9O

9O

Geoid Height Variances

Sun Synchronous Orbit Solutions
Gradiometer Only

90 180 270

GPS Onfy

90 180 270

Combined Solution

O. i 00000

380 0.00000

O. 100000

\

/

36O o.oo00o

o, 10o0oo

.-90

o gO 10o 270

/

36(1 {}.O0000

0.02 0.O4 0,06

Geoid [leight (met.crq)

O,Ofl O. I

7. Conclusions

The examination of computational aspects associated with the global

geopotential recovery problem constitutes the theme of this work. The

primary subject matter addresses specifically the use of satellite gradiometer

and unbiased GPS slant range observations to form and invert the normal

matrix associated with a large degree and order geopotential solution.

Memory resident and out-of-core parallel linear algebra techniques along with

data parallel batch algorithms form the foundation of the least squares

application structure. A secondary topic includes the adoption of object

oriented programming techniques to enhance the modularity and reusability of

code. Applications implementing the parallel and object oriented methods

successfully calculate the degree variances for a degree and order 110

geopotential solution on 32 processors of the Cray T3E.

7.1 Object Oriented Programming

Application software developed as part of this research utilizes the

design philosophy of object oriented programming. Precision orbit

determination applications require two general classes of objects. The

physical class abstracts the physical objects that comprise the satellite

environment. The mathematical class abstracts the mathematical techniques

153

used in the simulationanalysis. The prototypesatelliteapplication library,

OOPOD, demonstrateshow OOP effectively managescomplexity and

contributes to the developmentof modular and highly useable library

components.

the facility

applications.

A series of examples in the text and the appendicies illustrate

of the library in developing common orbit determination

7.2 Parallel Processing

The performance capabilities of parallel processing enable the rigorous

examination of the high resolution geopotential problem. Physically Based

Matrix Distribution distributes of parallel linear algebra operations according

to the data mapping of the linear system domain and range spaces.

Communications between different linear algebra objects proceed using well-

defined collective communication operations. Parallel BLAS Level 3

operations necessary for accumulation and matrix inversion build upon the

PLAPACK library infrastructure. In addition, modifications to the PLAPACK

infrastructure extend the capability of PLAPACK to out-of-core methods.

Virtual object methods perform the linear system solve operations required for

the geopotential recovery.

154

7.3 Algorithm and Software Development

Three different pieces of application software provide the functionality

required for the completion of this research. Two data parallel applications

generate the normal equations for satellite gradiometer and GPS observations.

Each application implements a different approach to data parallelism

depending on the complexities of the dynamic model. A single linear system

solve application completes the matrix inversion. The case studies verify the

software functionality through the computation of gravity field degree

variances for a simulated mission scenario.

7.4 Conclusions

7.4.1 Object Oriented Programming

Object oriented programming techniques effectively manage

complexity in precision orbit determination software. The association of data

and algorithms into objects removes unnecessary complexity from the scope

of the application developer. Object encapsulation permits the addition of

new functionality or changes in implementation without modification to

existing sofb,vare.

The OOPOD library illustrates the modular nature of objects and

demonstrates the facility of such a library. A well-designed library could

155

supportmanydifferentapplicationssharingsimilarphysicalandmathematical

methods.

Objectsdesignedaccordingto thephysicaland mathematicalentities

in thePODprobleminducecomputationalalgorithmswhich mirror thenatural

description of the solution process. For example, POD applications

manipulatesatellite objects in terms of the forcesgoverning the satellite

motion. The similarity between algorithm description and software

implementationenhancesthereadabilityandmaintainabilityof code.

The initial developmentcost of an object oriented design slightly

exceedsstructuredprogrammingtechniquesdue to the additional work of

developingtheobject infrastructure.Reuseof sot_varethroughthe addition

of newfunctionality(which is a muchsimplerprocesswhenworking in terms

of objects)andincorporationinto librariesoffsetsthedevelopmentcosts.

7.4.2 Parallel Processing

The PLAPACK library infrastructure simplifies the development of

high performance parallel linear algebra functions. Algorithms developed

using the PLAPACK style of coding minors the natural description of linear

algebra block algorithms.

156

The use of vendor optimized Level 3 BLAS maximizes the

computational performance of each processor. PLAPACK communication

based on PBMD and MPI efficiently moves data between processors.

Virtual object performance depends on the available I/O hardware and

the method of data communication between disk and memory. Effective

performance requires the movement in data in contiguous blocks. Algorithms

that minimize I/O requests achieve good performance on systems with shared

file systems such as the University of Texas Cray T3E.

PLAPACK objects permit the integration of parallel memory resident

and out-of-core linear algebra operations into a single general implementation.

The complexity of an architecture independent I/O infrastructure exists

completely within the object. Linear algebra object views continue to provide

the interface with user applications. The addition of object methods which

mirror standard C I/O functions provide the functionality to transfer data

between memory and disk.

7.4.3 Algorithm and Application Design

The complexity of dynamic and observation models, the amount of

memory required for linear algebra operations and the existence of inherently

serial computations all influence the parallel performance of POD

157

applications.In particular,thepropagationof satellitetrajectoriesgovernedby

complex dynamic models through numerical integration techniques

significantlyinhibit theparallelizationof PODcode.

Manydesignoptionsexist for theparallelizationof POD applications.

The combination data-parallel and work-parallel design attains good

performance for the satellite gradiometer application. The numerical

integrationcreatesa bottleneckin the GPSapplicationdueto the increasein

thenumberof satellitesandthecomplexityof thedynamicmodel.

The three softwareapplications,gradio,gpsand xena, illustrate the

successful merging of parallel processing and POD applications. The results

of the case studies confirm the software design approach by verifying previous

results presented by Schrama [1991], Koop [1993] and Visser [1994].

7. 5 Recommendations

7.5.1 Object Oriented Programming

The OOPOD infrastructure prototypes only a subset of the components

required for generalized POD applications. A complete implementation

requires additional force models (e.g., drag, third-body) , additional

observation models (e.g., range-rate, GPS double difference), more complete

satellite models (e.g., satellite orientation) and additional estimation and

158

integrationtechniques(e.g.,orthogonaltransforms,runge-kutta,second-order

methods). A complete implementation would also include libraries of derived

objects corresponding to specific satellite systems (e.g., TOPEX/Poseidon,

GPS).

7.5.2 Parallel Processing

The numerical integration of complex dynamic models constitutes the

primary obstruction to generalized parallel POD applications. Futher progress

in the development of generalized applications requires an examination of

parallel numerical integration algorithms.

The current PLAPACK I/O design exposes the file structure and

requires the application developer to manage the memory to disk

communications. All I/O operations would become transparent by extending

the view functionality to control data caching within the memory resident

portion of the virtual object.

The MPI-2 specification includes an architecture independent parallel

I/O interface. Adherence to the MPI-2 specification could simplify the

PLAPACK I/O implementation and increase the portability of the PLAPACK

library. The potential benefits warrant the close examination of MPI-2.

159

7.5.3 Algorithm and Application Design

An increase in the number of processors used in the analysis would

permit an increase in the geopotential resolutions. Similar case studies

performed on larger architectures would verify the scalability and provide

information concerning the stability of the least squares solution at larger

problem sizes.

In the sun synchronous case study, the inclusion of satellite tracking

information causes a significant improvement in the geopotential degree

variances. The result does not necessarily imply a corresponding increase in

estimated coefficient accuracy. A rigorous simulation study would clarify the

relationship between degree variances and coefficient accuracy for high

resolution geopotential models.

160

Appendix A CRF to TRF Transformations

The fn'st order transformation from the CRF to the TRF is

accomplished via nine plane transformations. The f'u'st six rotations

correspond to external torque effects due to general precession and nutation.

The last three rotations correspond to torque free motion of the pole due to

time varying rotation and polar motion

7r_ = R2(-xp)Rl(-yp)R3(ctz,_,)

The evaluation of the terms found in Equation (47) require the

definition of several time systems. The time systems may be grouped into

three categories: dynamic time, atomic time, and sidereal time. Dynamic time

is the independent variable in the equations of motion. Atomic time is a

uniformly running time scale used for basic time keeping purposes. Sidereal

time is a measure of the Earth rotation. The primary rotation angle between

the CRF and the TRF is Greenwich Apparent Sidereal Time (GAST).

Variations in Earth rotation are usually expressed as differences between UT1

and UTC. The different time systems are related to GAST via the following

relationship.

(47)

161

a CAST = _ GMSTo +

d(ad ;sr) [TDT- (TDT- rz) - (rz- uTc) - (uw-)]+

Eqn.E

International Atomic Time (TAI) is related to Terrestrial Dynamic

Time (TDT) by the relation TDT = TA1+32.184 seconds. The fundamental

unit of TA/is one SI second which is equivalent to 9,192,631,770 periods of

transition between two hyperfme levels of the ground state of Cs-133 [Bock,

1996]. The SI day is defined as 86400 seconds, and the Julian century as

36525 days.

The Julian date is defined as the number of days from 12 h UT Jan 1,

4713 BCE. The standard epoch is taken as J2000 = JD 2451545.0 = 2000 Jan

ld.5 UT. Time indexes for the rotational quantities are usually expressed in

Julian centuries since J2000.

(48)

JD - 2451545.0
T=

36525

For civil time keeping purposes, Universal Coordinated Time (UTC) is

an atomic time-keeping standard to which leap seconds are added and

subtracted such that IDUTll =]UTC- UTll < 0.9seconds.

Greenwich Apparent Sidereal Time (GAST) is the local hour angle

between the Greenwich meridian and the true vernal equinox (i.e., corrected

(49)

162

for precessionand nutation). GreenMean SiderealTime (GMST) is not

correctedfor nutationeffects. Thetwo anglesarerelated by theequationof

equinoxeswheree is themeanobliquity, Ae is the nutation in obliquity, and

A_ is the nutation in longitude.

Eq.E = aG,4sr - aG_ r = A_ cos(s + As) (50)

The apparent motion of the sun about the Earth is non-uniform due to

the eccentricity of the Earth's orbit. Universal Time (UT) is defined as the

hour angle of a fictitious mean sun which moves with constant velocity along

the equator. UT1 is universal time corrected for polar motion. The

relationship between UT1 and GMST is given where Tu expresses the fraction

of Julian century since J2000 UT.

a GMsr = UT1 + 6h41m50. ' 54841 +

8640184.' 812866T u + 0.' 093104T_ + 6.' 2x10 -_ T_

d(a _Msr) = 1' .002737909350795 + 5' .9005X10 -t_ Tt: - 5' .9xl 0 -15 Tu2 (51)
dt

d(a _tsr) UT 1
a GMST = a GMST 0 "J"

dt

The main motion of the Earth's rotation axis is due to luni-solar

attraction on the Earth's equatorial bulge. The precession period is 25,800

years with an amplitude of 23g.5. The combination of this effect with the

precession caused by other planetary bodies is termed general precession. The

163

nutationof theEarth'srotationaxisis a shorterperiodoscillationwith periods

of 1dayto 18.6years.

The CRF is definedas a geocentric,equatorialframewith the mean

equinoxandequatorialof J2000accordingto the 1976IAU convention. The

definition is supplementedby the 1980nutation seriesfor an Earth with a

liquid core and elastic mantle [Wahr, 1979]. The precessionand nutation

quantitiesaregivenin termsof fractionof JuliancenturysinceJ2000andtime

from specifiedepoch.

'a = (2306".2181+ 1".39656T- 0".000139T)t +

(0".30188- 0".000344T)t2+ 0".017998t3

z z = (2306".2181 + 1".39656T- 0".000139T 2)t +

(1 ".09468 - 0".000066T)t 2 + 0".018203t 3

04 = (2004 ".3109 - 0".85330T- 0".000217T 2)t -

(0".42665 - 0".000217T)t 2 - 0".041833t 3

6 = (84381".448 - 46".8150T + 0 ".00059T 2 + 0".001813T 3) +

(--46".815 - 0".00177T + 0 ".005439 T 2)t +

(-0".00059 + 0".005439T)t 2 + 0".0018 It 3

The nutation in obliquity and nutation in longitude are defined in terms

of 5 fundamental arguments of the sun and moon: mean anomaly of moon (/),

mean anomaly of sun (I'), mean argument of latitude of moon (F), mean

(52)

(53)

164

elongationof moon from the sun(D) andmeanlongitudeof ascendinglunar

node(f_).

A _ = A0: + AI: T)sin kj, ct, (T)
\ i=l

A£= Boj +BuT cos ,ai(T

a I = l = 485866".733 + (1325' + 715922 ".633)T + 3 I".310T 2 + 0".064T 3

ot 2 = l' = 1287009".804 + (99 r + 1292581".224)T- 0".577T 2 - 0".012T 3

a 3 = F = 335778".877 + (1342 r + 295263 ".137)T- 13 ".257T 2 + 0".011T 3

a 4 = D = 1072261 ".307 + (1236 r + 1105601 ".328)T- 6".891T 2 + 0".019T 3

a 5 = f_ = 450160".280 - (5 r + 482890".539)T+ 7".455T 2 + 0".008T 3

Movement of the rotation axis is also influenced by elastic properties

of the Earth and the exchange of angular momentum between the solid Earth,

oceans and atmosphere. The polar motion of the true celestial pole as defined

by precession and nutation corrections contains a free component with a

period of about 430 days (Chandler period), and a forced components with

dominant terms at the diurnal (tidal forces) and annual (atmosphere

excitations) periods. The polar motion parameters and difference UTC-UT1

are tabulated from observational values.

(54)

(55)

165

Appendix B Conversion of Gravity Gradients from

Body Fixed Spherical to Topographic
Coordinates

The expressions for the gravitational accelerations and gradients

expressed in topographic coordinates were restated by Bettadpur [1992].

1
U,=m G

r COS

v_ =lu,
r

u.=G

(56)

1 sin_b 1

Uee= r: COS:_ U_ ; COS_U, +-Urr

1 sin_b

Ue" = r: cos_b Ux, + r2 cos2 _bU_

1 1

U_ - rcos# U> r: cos# Ua

lu +lv_
Unn = r2 ¢_ r

1 U 1
u_ =r _ -V U_

U_ =U_

The following is C-like pseudocode of an efficient algorithm to make

the conversion. The partials with respect to the gravity field coefficients are

converted using Level 1 BLAS routines.

(57)

/* Input */

166

a = [U, U_ U, l

g ffi [U_ U_x U_, U_ Uz, U**]

ap ffi[dUrda dUxda dUtdct]

gp = [dUrrdct dUrxdCx dUr, dct dU_da dUx,dcx dUt,da]

/* accelerations */

a[1] *ffi 1 / (r * cos qb);

a[2] *= 1 /r;

tmp ffia[0] ; a[01 = a[1] ; a[1] ffia[2] ; a[2] ffitmp;

/* gradients */

gill *ffi 1 / (r * cos ¢_);

g[2] *= 1 / r;

g[3] *ffi 1 / (r 2* cos 2 qb);

g[4] *ffi 1 / (r2 * cos _b);

g[5] *= 1 / r2;

gill +ffi -a[0l / r;

g[2] += - a[1] / r;

g[3l += a[2] / r - (a[1] * sin q_) / (r * cos qb);

g[4] +ffi (a[0] * sin qb) / (r * cos qb);

g[5] +ffi a[2] / r;

tmp ffig[O] ; g[O] ffig[31 ; g[3l ffi g[5] ; g[Sl ffitmp;

trap = gill ; gill ffig[4l ; g[41 = g[2] ; g[21 ffitmp;

r* acceleration partials 0ength =ffi number of partials) */

xSCAL (length, 1 / (r * cos _b), ap [1 * length l, 1);

xSCAL (length, 1 / r, ap [2 * length], 1);

xSWAP (length, ap [0 * length], 1, ap [1 * length], 1);

xSWAP (length, ap [1 * length], 1, ap [2 * length], 1);

_*gradient partials */

xSCAL (length, 1 / (r * cos qb), gp [1 * length], 1);

xSCAL (length, 1 / r, gp [2 * length], 1);

xSCAL (length, 1 / (r2 * cos 2 ¢_), gp [3 * length], 1);

xSCAL (length, 1 / (r2 * cos qb), gp [4 * length], 1);

xSCAL (length, 1 / r2, gp [5 * length], 1);

xAXPY (length, 1 / r, ap [0 * length], 1, gp [1 * length], 1);

167

xAXPY (length, 1 / r, ap [1 * length], 1, gp [2 * length], 1);

xAXPY (length, 1 / r, ap [2 * length], 1, gp [3 * length], 1);

xAXPY (length, -sin _b/ (r * cos qb), ap [1 * length], 1, gp [3 * length], 1);

xAXPY (length, sin _ / (r * cos _b), ap [0 * length], 1, gp [4 * length], 1);

xAXPY (length, 1 / r, ap [2 * length h 1, gp [5 * length], 1);

xSWAP (length, gp [0 * length], 1, gp [3 * length], 1);

xSWAP (length, gp [3 * length], 1, gp [5 * length], 1);

xSWAP (length, gp [1 * length], 1, gp [4 * length], 1);

xSWAP (length, gp [4 * length], 1, gp [2 * length], 1);

/* Output */

a = [U, Un Un]

g -- [U_ Ue. Ueu Uoo U.u U_]

ap = [dUeda dUnda dU.da]

gp = [dUeeda dUenda dUeuda dUnnda dU_uda dUuuda]

168

Appendix C OOPOD Object Methods

C.1 Generic Physical Object

C.1.1 Properties

observable

dynamic

force

Specifies the ability to use the object as an observable

quantity

Specifies the requirement of numerical integration to
propagate the object's state

Specifies the ability to use the object as a dynamic force

effecting the motion of a satellite object

C.1.2 Interface

int32 PhysObLcreate

int32 PhysObLfree
int32 PhysObLisobservable

int32 PhysObLisdynamic
int32 PhysObLlsforce

(PhysObj * object);
(PhysObj * object);

(PhysObj * object);
(PhysObj * object);

(PhysObj * object);

C.2 Generic Mathematical Object

C.2.1 Properties

realized Specifies the realization of the mathematical object via
association with physical objects

C.2.2 Interface

lnt32 MathObLcreate

I_t32 MathObLfree

[lnt32 MathObj_isrealIzed

(MathObj * object);

(MathObj * object);
(MathObj * object);

169

C.3 Earth Orientation Parameters Table

C.3.1 Properties

number_points

interval

firsLut

last_ut

ut

xp

YP

utl_tai

dutdtai

et_utl

ut_table

xp_table

yp_table

utlJal_table

C.3.2 Interface

Number of points in the table

Interval between points in the table

Epoch of first entry in the table

Epoch of last entry in the table

Epoch of current table interpolation

Polar motion of current table interpolation

Polar motion of current table interpolation

Time difference of current table interpolation

Variation in time difference of current table interpolation

Time difference of current table interpolation

Array of table entries

Array of table entries

Array of table entries

Array of table entries

int32 EopTable_create

int32 EopTable_free

int32 EopTable_calculate

int32 EopTable_ut
int32 EopTable_xp

int32 EopTable..yp
int32 EopTable_ut l_minus_tai

lnt32 EopTable_dutdtai
int32 EopTable_et_minus_ut 1

(char * filename,
tnt32 file format,

EopTable * table);

(EopTable * table);
(EopTable table,

double julian_et);

(EopTable table);

(EopTable table);
(EopTable table);

(EopTable table);
(EopTable table);

(EopTable table);

170

C.4 Reference Frame

C.4.1 Properties

Julian et

days_from_epoch

days_from_epoch_utl

greenwichmean

greenwichtrue

eLutl

dutdta

dghadt

xp

YP

nutationJongltude

nutatlon_obllqulty

nutatlon_righLascension

zeta

Z

theta

mean_obliquity

true_obliquity

epoch2meanofdate

meanofdate2trueofdate

table

object

C.4.2 Interface

Epoch of current frame evaluation

Days from true-of-date reference epoch at evaluation

Time difference at evaluation

Hour angle at evaluation

Hour angle at evaluation

Time difference at evaluation

Variation in time difference at evaluation

Variation in hour angle at evaluation

Polar motion angle at evaluation

Polar motion angle at evaluation

Nutation angle at reference epoch

Nutation angle at reference epoch

Nutation angle at reference epoch

Precession angle at reference epoch

Precession angle at reference epoch

Precession angle at reference epoch

Defining frame angle at reference epoch

Defining frame angle at reference epoch

Rotation matrix

Rotation matrix

Earth orientation parameter table

Physical object properties

I lnt32 RefFrame_create

lnt32 RefFrame_free

(char * filename,
lnt32 file_format,

RefFrame * frame);
(RefFrame * frame);

171

int32 RefFrame_calculate

int32 RefFrame_J2000_to_mean ofdate (

int32 RefFrame__meanofdate to_trueofdate (

int32 RefFrame_trueofdate to_geocentric (

int32 RefFrame_geocentric_to_topographic (

int32 RefFrame_geocent ric_to_rtn

int32 RefFrame_general

int32 RefFrame_cartesian_to_spherical (

int32 RefFrame_spherical_to_cartesian (

iint32 RefFrame_merge

tnt32 RefFrame_vector

int_2 RefFrame_..tensor

int32 RefFrame_vector_partials

int32 RefFrame_tensor_parttals

172

int32
float64

RefFrame

RefFrame
float64 *
Refframe

float64 *

RefFrame
float64 *
float64 *

float64

float64
float64

float64 *
float64 *

float64 *
float64 *
float64

float64
float64
float64 *

float64 *
float64 *
float64 *

float64 *
float64 *
float64

float64
float64
int32

int32

float64 *
float64 *
lnt32

float64 *
float64 *

int32
float64 *

float64 *
lnt32

float64 *
float64 *

lnt32
lnt32

float64 *
float64 *

lnt32

set_to&

epoch,

frame);
frame,

a);
frame,

a);
frame,

a_

b);
radius,

lambda,

phi,
a);

pos,
vel,

a);
psi,
theta,

phi,
a);

X,

radius,
lambda,

phi);

x,
radius,

lambda,
phi);
side,

trans,

a,
b);
trails,

a,
x);

trans,

a,
g);
trans,

a,
xp,
length);

trans_

a,

gP,
length);

int32RefFramejet_globalint32RefFrame_get_global
(RefFrame frame);

int32 RefFrame_isobservable

tnt32 RefFrame__isdynamic
int32 RefFrame._hforce

(RefFrame *

(RefFrame
(RefFrame
(RefFrame

frame);

frame);
frame);

frame);

C. 5 Legendre Associated Functions

C.5.1 Properties

shape

degree

order

Idlm

deriv

u

anm

bnm

fnm

pnm

dpnm

ddpnm

object

Shape of geopotential model

Maximum degree of expansion

Maximum order of expansion

Leading dimension of all matrix data

Specifies calculation of which derivatives

Argument of function

Recursion coefficients

Recursion coefficients

Recursion coefficients

Function evaluations

Function evaluations

Function evaluations

Mathematical object properties

C.5.2 Interface

tnt32 Legendre_create

int32 Legendre_free
int32 Legendre_calculate

tnt32 LegendreJndex

(lnt32
int32

int32
lnt32

Legendre *

(Legendre *
(Legendre

float64

(Legendre
lnt32
lnt32

shape,
degree,
order,
deriv,

legendre);

legendre);
legendre,
u);

legendre,

n,

m);

173

int32 Legendre_index

int32 Legendre shape
Int32 Legendre_degree
int32 Legendre order

int32 Legendre_Idim

int32 Legendre._deriv
float64 Legendre._u

float64 * Legendre_anm
float64 * Legendre bnm

float64 * Legendre fnm

float64 * Legendre_pnm

float64 * Legendre_dpnm
float64 * Legendre ddpnm
int32 Legendre__isrealized

(Legendre
int32

int32

(Legendre
(Legendre
(Legendre

(Legendre

(Legendre
(Legendre

(Legendre
(Legendre

(Legendre
(Legendre

(Legendre
(Legendre
(Legendre *

legendre,
n_

m);

legendre);
legendre);

legendre);
legendre);

legendre);
legendre);
legendre);

legendre);

legendre);
legendre);
legendre);

legendre);
legendre);

C. 6 Gravity Field

C.6.1 Properties

measurement

coordinates

shape

radius

lambda

phi

ae

mu

potential

accelerationO

acceleration1

acceleration2

gradlentO

gradient1

gradient2

gradient3

Desired geopotential evaluation

Desired coordination system

Specifies geopotential model representation

Function argument for current evaluation

Function argument for current evaluation

Function argument for current evaluation

Geophysical constant

Geophysical constant

Function evaluation

Function evaluation in desired coordinates

Function evaluation in desired coordinates

Function evaluation in desired coordinates

Function evaluation in desired coordinates

Function evaluation in desired coordinates

Function evaluation in desired coordinates

Function evaluation in desired coordinates

174

gradient4

gradient5

cnm

snm

dpotdcnm

dpotdsnm

daOdcnm

daOdsnm

daldcnm

daldsnm

da2dcnm

da2dsnm

dgOdcnm

dgOdsnm

dgldcnm

dgldsnm

dg2dcnm

dg2dsnm

dg3dcnm

dg3dsnm

dg4dcnm

dg4dsnm

dg5dcnm

dg5dsnm

legendre

object

Function evaluation in desired coordinates

Function evaluation in desired coordinates

Summation coefficients

Summation coefficients

Function partials in desired coordinates

Function partials in desired coordinates

Function partials in desired coordinates

Function partials in desired coordinates

Function partials in desired coordinates

Function partials in desired coordinates

Function partials in desired coordinates

Function partials

Function partials

Function partials

Function partials

Function partials

Function partials

Function partials

Function partials

Function partials in

Function partials in

Function partials in

Function partials in

in desired coordinates

in desired coordinates

in desired coordinates

in desired coordinates

in desired coordinates

in desired coordinates

in desired coordinates

in desired coordinates

desired coordinates

desired coordinates

desired coordinates

desired coordinates

Function partials in desired coordinates

Basis function for expansion

Physical object properties

C.6.2 Interface

lnt32 GravityField_ereate (lnt32
int32

lnt32
lnt32

shape,

degree,
order,

measurement,

175

int32 Gr avityField_calculate

int32 GravityField_free
int32 GravttyField_partiaUength

int32 Gr avityField_extract_partials

float64 GravityField__potenttal
float64 GravityField_acceleration0

float64 GravityField acceleration 1
float64 Gr avttyField__acceleration2

float64 GravityField_gradient0
float64 GravityField_gradient 1
float64 GravityField_gradient2

float64 Gr avityField_gradient3
float64 GravttyFleld_gr adient4

float64 GravityField_gr adient5
float64 GravityField_acceleratton

float64 GravityField._gradient

int32 GravityField_lndex

int32 GravityField_shape

lnt32 GravttyFleld_degree
lnt32 GravityFleld_order

lnt32 GravltyField_Idhn
int32 GravttyFieid_isobservable

_int32 GravttyFleld_isdyn amic
. int32 GravityField__isforce

int32
char *

int32

GravityField *
(GravityField

float64

float64
float64

(GravityField *

(GravityField
lnt32
int32 *

(GravityField
lnt32

int32
float64 *

(GravityField
(GravityField

(GravityField
(GravityFleld
(GravityField

(GravityField
(GravityField
(GravityField

(GravityFleld
(GravityField
(GravityField gfield,

float64 *

(GravityField gfield,
float64 *

(GravityField
int32
int32

(GravttyField

(GravttyField
(GravityFleld

(GravityField
(GravityField *

(GravityField *
(GravityField *

coordinates,
filename,

file.format,

gfield);

gfield,
radius,
lambda,

phi);

gfleld);
gfield,

estim_param,
length);

gfleld,
which_set,

esttm_param,

partials);
gfield);

gfleld);
gfield);
gfleld);

gfield);
gfield);
gfield);
gfield);

gfleld);
gfield);

acceleration);

gradient);
gfield,
n,

m);

gfleld);

gfield);
gfield);

gfleld);
gfleld);

gfleld);
gfleld);

176

C 7 Satellite

C.7.1 Properties

epoch

epoch_state

arc_length

state

number_forces

force_tags

forces

object

Reference epoch

Satellite state at reference epoch

Seconds since reference epoch

Satellite state at seconds since reference

Number of forces acting on satellite

List of forces acting on satellite

Force objects acting on satellite

Physical object properties

C.7.2 Interface

int32 Satellite_create

int32 Satelllte_free

lnt32 Satellite_epoch

lnt32 Satellite_state

tnt32 Satellite__force

float64 Satellite__epoch
float64 Satellite_arc__length
lnt32 Satellite__number_forces

(float64
lnt32

float64 *
Satellite *

lnt32

(Satellite *
(Satellite

float64 *

(Satellite
lnt32
float64 *

(Satellite
lnt32
lnt32 *

PhysObj *

(Satellite
(Satellite
(Satellite

epoch,
coordinates,

state,
satellite,
number_forces,

/* vargs */);
satellite);

satellite,

epoch);
satellite,

coordinates,
state);
satellite,

which_force,

force_tag,
force);
satellite);

satellite);
satellite);

177

C.8 Satellite Gradiometer Observable

C.8.1 Properties

psi

theta

phi

a

g

sat2xg

topographlc2xg

partials

partial_length

gravity_field

satellite

object

C.8.2 Interface

Rotation angle between satellite and gradiometer frames

Rotation angle between satellite and gradiometer frames

Rotation angle between satellite and gradiometer frames

Gradiometer measured accelerations

Gradiometer measured gradients

Rotation matrix

Rotation matrix

Gradient partial derivatives

Number of gradient partial derivatives

Gravity field influencing gradiometer

Satellite containing the gradiometer

Physical object properties

lnt32 Gradiometer_create

lnt32 Gradiometer_free
int32 Gradiometer_calculate

lnt32 Gradiometer_extract_partials

lnt32 Gradlometer_gradient

float64 Gradiometer_psi
float64 Gradiometer_theta

float64 Gradiometer_phi

float64 Gradiometer_.g

GravityField Gradiometer_gr avtty_field

(GravityField gravity_field,
Satellite satellite,

float64 psi,
float64 theta,

float64 phi,
Gradlometer * gradio);

(Gradiometer * gradio);

(Gradiometer gradio);
(Gradiometer gradlo,

float64 which_set,

float64 estim_param,

float64 * partials);

(Gradiometer gradio,
float64 ** gradient);

(Gradiometer gradio);
(Gradlometer gradio);

(Gradiometer gradio);
(Gradiometer gradio);

(Gradiometer gradio);

178

C.9 Satellite-to-Satellite Ranging Observable

C.9.1 Properties

elevation_mask

below_mask

range

drangedxhigh

partials

Integ_hlgh

Integ_low

object

C.9.2 Interface

Elevation mask for observation

Specifies whether current observation is below elevation
mask

Current observation

Partials with respect to high satellite position

Observation partials

Integration object

Integration object

Physical object properties

int32 SatTrack_create

int32 SatTrack_free
int32 SatTrack_calculate

int32 SatTrack_extract_partials

lnt32 SatTrack_ number_partials
int32 SatTrack_below_mask
float64 SatTrack_range

(float64 elevattonmask,
MsilibABFS integ_high,

MsflibABFS lnteg__iow,
SatTrack * sst);

(SatTrack * sst);
(SatTrack sst);

(SatTrack sst,
float64 estim_.param,
float64 * partials);

(SatTrack sst);
(SatTrack sst);
(SatTrack sst);

C.I O Batch Estimator

C.10.1 Properties

which_observation

sigma

batch_count

observation_count

Specifies type of observable

Observation variance

Number observation in current batch

Total number of observations

179

batch_size

number_equations

number_parameter_types

parameter_type

number_parameters

batch_matrix

normal_matrix

normaLarray

covarlance

subarc_matrix

correl_matrlx

object

C.10.2 Interface

Size of accumulation batch

Number equations in linear system

Number of classes of estimated parameters

List of parameter types

Number equations per parameter type

Matrix of partial arrays in current batch

Linear system operator

Linear system fight-hand-side

Inverted linear system operator

Linear system operator for subarc parameters

Correlation matrix between subarc parameters and global
parameters

Mathematical object properties

int32 Batch_create

lnt32 Batch_free

lnt32 Batch_initialize_parameters

int32 Batch_realize

int32 Batchextract_observation

int32 Batch_lncrement_subarc
lnt32 Batch_accumulate

tnt32 Batch_solve
int32 Batch_extracLvartance

int32 Batch_observation_count

tnt32 Batch_number_equations
float64 * Batch_covariance_matrtx

float64 * Batch_normal_matrix
int32 Batch__isfull

(float64 batch_size,
Batch * estimator);

(Batch * estimator);

(Batch estimator,
float64 n_parm_types,

/* vargs */);

(Batch estimator,
float64 which_obs,

PhysObj observation,
float64 sigma);

(Batch estimator,

PhysObj observation);

(Batch estimator);
(Batch estimator);
(Batch estimator);

(Batch estimator,
float64 * variances);

(Batch estimator);

(Batch estimator);
(Batch estimator);

(Batch estimator);
(Batch estimator);

180

C.11 Adams-Bash forth Numerical Integrator

C.11.1 Properties

state_transition

number_equations

number_parameter_types

parameter_type

number_parameters

t

state

satellite

object

Specifies integration of state transition information

Number equations in integration vector

Number of classes of dynamic parameters

List of parameter types

Number equations per parameter type

Current epoch

Integration state at current epoch

Physical object associated with integration

Mathematical object properties

C.11.2 Interface

int32 MsilibABFS_create

int32 MslUbABFS_free

tnt32 MsilibABFS_lnitialize_.parameters

int32 MsilibABFS__realize

int32 MsiUbABFS__prepagate

int32 MstllbABFS_restart

int32 MsilibABFS_parameter_types

lnt32 MsillbABFS_num_param_types
Satellite MslUbABFS_satellite

(float64 state_transition,
float64 nord,

float64 nloop,
float64 alim,
float64 meshsize,

MstUbABFS * integrator);

(MsiUbABFS * Integrator);
(MsiUbABFS integrator,

float64 n_.parm_types,
/* vargs */);

(MsiUbABFS integrator,
Satellite satellite);

(MsIIibABFS Integrator,
float64 tout);

(MsIIIbABFS Integrator);

(MsIllbABFS integrator,
float64 which_param,

float64 * parameter_tag,
float64 * num_param);

(MsIIlbABFS Integrator);

(MstUbABFS Integrator);

C.12 Gradiometer Application

181

1

2

3

4

5
6

7
8

9

10

11
12
13

14
15

16

17

18

19

20

21

22

23

24

25

26

27

28
29

30

#include "oopod.h"

int main (int argc, char ** argv)

int32

float64

RefFrame

GravityField

1, restart_index = 1,

satellite_gravity_field_degree ffi3,
gradiometer_gravity, field_degree = 20,
batch_size = 5000;

sigma = 1.0e-12,

t = 0.0e+0,

arc length ffi 45.0e+0 * DAY2SECOND,
interval - 60.0e+0,
restart_interval ffi0.5 * DAY2SECOND,

epoch = 2447527.500650278e+0,
state [6] ffi { 6637163.04066062e+0, 0.0e+0, 0.0e+0,
0.0e+0, -13.516035414281e+0, 7749.946235174633e+0 };

reference_frame = NULL;

satellite_gravity_field = NULL,
gr adiometer__gravity_field = NULL;

Satellite satellite ffi NULL;

MsIIibABFS integrator = NULL;

Gradiometer gradiometer ffiNULL;

Batch estimator - NULL;

RefFrame_create ("/work/utexas/csr/byab323/EOPDAT.BIN",
EOP__FILE_.FORMAT, & reference_frame);

RefFrame__calculate (SET_TOD, epoch, reference_frame);

RefFrame_set_global (reference_frame);

GravttyField_ereate (TRIANGULAR, satellite_gravi___field_degree,
atenite_gravity, field_degree, ALL_MEASUREMENTS,
TOPOGRAPHIC,

182

31

32

33
34

35
36

37

38

39

40

41

"/work/utexas/csr/byab323/GEO.BIN.180x 180",

GEO_FILE_FORMAT, & satellite_gravity_field);

GravityField_create (TRIANGULAR, gradiometer_gravity_field_degree,
gradiometer_gravity_field__degree,
ALL_MEASUREMENTS, TOPOGRAPHIC,

"/work/utexas/csr/byab323/GEO.BIN.180x180",
GEO_FILE_FORMAT, & gradiometer_gravity_field);

Satellite_create (epoch, GEOCENTRIC, state, & satellite, 1,
GEOPOTENTIAL, satellite_gravity_field);

Gradiometer_create (gradiometer_gravity_field, satellite, 0.0e+0, 0.0e+0,

00.0e+0 & gradiometer);

42
43

MsilibABFS_create (NO_STATETRANSITION, 7, 10, 1.0e-6, 30.0e+0, &

integrator);

44

45

46

47

48

49

50
51

52

53
54

55

56

57

58

59

60

MsilibABFS__realize (integrator, satellite);

Batch_create (batch_size, & estimator);

Batchjnitialize_parameters (estimator, 1, GRAV_COEF_ALL);

Batch_realize (estimator, GRADIOMETER, gradiometer, sigma);

while (t <ffi arc_length)

{

if (t > restartJndex * restart_interval)

{

MsilibABFS_restart (integrator);

restart_index++;

}

MsilibABFS_propagate (integrator, t);

Gradiometer_calculate (gradiometer);

ff (Batch__full (estimator)) Batch_accumulate (estimator);

Batch_extract_observation (estimator, gradiometer);

t +ffi interval;

}
183

61

62

63

64

65

66

67

68

69

7O

Batch_accumulate (estimator);

Batch_solve (estimator);

Batch_free (& estimator);

Gradiometer_free (& gradiometer);

MsilibABFS_free (& Integrator);

Satelllte_free (& satellite);

GravityField_free (& gradiometer_gravtty__field);

GravityField_free (& satellite_gravity_field);

RefFrame_free (& reference_frame);

C.13 GPS Application

8
9

10

11
12

13
14

15
16

17

18

#include "oopod.h"

int main (int argo, char ** argv)

int32 i, number_.gps_satelUtes ffi25,
restart_index ffi 1,

satellite_gravity_field_degree = 3,
batchstze = 5000;

float64 sigma = 1.0e-3,
elevationmask = 10.0e+0 * DEGREE2RADIAN,

t - 0.0e+0,

arcJength = 12.0e+0 * DAY2SECOND,
interval ,. 60.0e+0,
restart interval s 0.5 * DAY2SECOND,

epoch m 2447527.500650278e+0,
state_gps [25 * 6] - { /* GPS states may be hardcoded

here */},
stateJow [6] .. { 6633085.575,-405.372, 232450.642,
-271.802957, 13.505910, 7745.171574 },

184

19

20

21
22

23
24

25

26

27

28

29

30

31

32
33

34
35

36
37

38
39

40
41

42

43

44

45

46

RefFrame reference_frame = NULL;

GravityField satellite_gravity_field = NULL;

Satellite * satellite__gps = NULL,
satellite_low ffiNULL;

MsilibABFS * integrator_gps = NULL,
integrator_low ffiNULL;

SatTrack sst = NULL;

Batch estimator = NULL;

RefFrame_create ("/work/utexas/csr/byab323/EOPDAT.BIN",
EOP_FILE_FORMAT, & reference_frame);

RefFrame_calculate (SET_TOD, epoch, reference_frame);

RefFrame_set_global (reference_frame);

GravityField_create (TRIANGULAR, satelUte_gravity_field_degree,
satelUte_gravity_field_degree, ALL_MEASUREMENTS,

TOPOGRAPHIC,
"/work/utexas/esr/byab323/GEO.BIN.180x180",
GEO_FILE_FORMAT, & satellite__gravity_field);

Satellite create (epoch, GEOCENTRIC, state_low, & satellite_low, 1,
GEOPOTENTIAL, satellite_gravity_field);

MsiUbABFS_create (STATE_TRANSITION, 7, 10, 1.0e-6, 30.0e+0, &

integrator_low);

MsilibABFS_lnitialize_parameters (integrator_low, 2, INITIAL_STATE,
GRAV_COEF_ALL);

MsilibABFS_reaUze (integrator_low, sateUite_low);

satellite_.gps m calloe (number_gps_satellites, sizeof (Satellite));

integrator_gps ,, calloe (number_.gps__satellites, stzeof (MsilibABFS));

for (l = 0 ; ! < number_gps_satellites ; i++)

{

185

47

48

49

5O

51

52

53

54

55

56

57

58

59

6O

61

62

63

64

65

66

67

68

69

70

71

72

Satellite_create (epoch, GEOCENTRIC, & state_.gps [6 * i], &
satellite_gps [i], 1, GEOPOTENTIAL,

satellite_gravity_field);

MsilibABFS_create (STATE_TRANSITION, 7, 10, 1.0e-6, 30.0e+0, &

integrator_gps [l]);

MsilibABFS._initialize_parameters (integrator_gps [i], 2,
INITIAL_STATE, GRAV_COEF_ALL);

MsilibABFS__realize (integrator_gps [i], satellite_gps [i]);

}

SatTrack create (elevation_mask, integrator_.gps [0], integrator_low, &

sst);

Batch create (batchsize, & estimator);

Batch_initialize_parameters (estimator, 2, INITIALSTATE, SUBARC,
GRAV_COEF ALL, GLOBAL);

Batch_realize (estimator, SST, sst, sigma);

while (t <= arc_length)

{

if (t • restart_index * restart_interval)

{

MsilibABFS_restart (integrator_low);

for (i ,, 0 ; i < number_gps_satelHtes ; i++)

MsiHbABFS__restart (lntegrator_gps [i]);

Batch__lncrement_subarc (estimator);

restart_index++;

}

MsilibABFS_propagate (integrator_low, t);

186

73

74

75

76

77

78

79

8O

81

82

83

84

85

86

87

88

89

9O

91

92

93

94

95

for (i = 0 ; i < number_gps_satelUtes ; I++)

{

MsillbABFS_propagate (lntegrator_gps [l], t);

SatTrack_calculate (integrator_gps [i], lntegratorJow, sst);

ff (! SatTrack_below_mask (sst))

{

ff (Batch_isfull (estimator))

Batch_accumulate (estimator);

Batch_extract_observation (estimator, sst);

}

}

t += interval;

}

Batch_accumulate (estimator);

Batch_solve (estimator);

Batch_free (& estimator);

MsUibABFS_free (& integratorJow);

Satellite_free (& satelUte_low);

for (1 = 0 ; 1< number_.gps_satellites ; l++)

{

MsilibABFS_free (& integrator_gps [1]);

Satellite_free (& sateUite_gps [1]);

}

187

96

97

98

99

100

101

102

SatTrack_free (& sst);

free (integrator_gps);

free (satellite_gps);

free (sst);

GravityField_free (& satellite_gravity_field);

RefFrame_free (& reference_frame);

188

Appendix D Gravity Field Indexing Techniques

1).1 Number of Coefficients in a Degree and Order 1Expansion

The coefficients in a spherical harmonic expansion may be organized

in terms of two lower triangular matrices. The first matrix stores the

coefficients of the cosine terms, and the second stores the coefficients of the

sine terms. While the order zero sine terms are undefined, it is convenient use

matrices of equal dimensions with the first column of the sine coefficient

matrix set to zero.

The number of coefficients is simply the count of the elements

contained within the two lower triangular matrices minus the number of

elements in the first column of the sine coefficient matrix. The number of

elements in a lower triangular matrix is n(n + 1) where n is the dimension of
2

the matrix. An expression for the number of coefficients in terms of the

maximum degree and order l may be developed.

n= 2((l+1Xl+2))-(l+1)2

This expression reduces a very simple form.

n = (l + 1)2

189

(58)

(59)

D.2 Lower Triangular Matrix Mapped to a Linear Array

Reducing memory usage may be accomplished by packing the storage

of lower triangular matrix in to linear array. A useful expression may be

developed which relates the row and column indices of the matrix to the index

of the linear array. The ordering of the matrix elements could be in row-major

or column-major order. Four expressions will be developed. The first two

expressions use indices which start a zero as is common in the C programming

language and in the indexing of gravity field coefficients. The second two

expressions use indices which start

FORTRAN programming language.

follow the same general formulas.

at one as is the

The development

convention in the

of the expressions

Column-major ordering

Index = Linear Array - Number of elements in
Dimension the smallest lower

triangular matrix

containing the target
element

+ Number of elements + Array index starting bias

below the diagonal term

Row-major ordering

Index = Number of elements in the+ Number of elements

largest lower triangular from the fast column
matrix above the target
element

+ Array index starting bias

190

The expressions for indices starting at zero will use l and m to

represent the row and column indices of the lower triangular matrix. The

parameter D is defined as the maximum l or m permitted. The starting bias B

specifies the linear array index of the (0,0) element. Therefore, B=O if starting

at the beginning of the array.

Column-major ordering

0

0 0

1 1

2 2

3 3

4 4

l

1 2 3 4 m

5

6 9

7 10 12

8 11 13 14

I=(D+IXD+2) (D-m+IXD-m+2)
2 2

I= m(2D+l-m) +l+B

+(t-m)+B

(60)

(61)

(62)

191

Row-major ordering

0 1 2 3 4

0 0

1 1 2

2 3 4 5

3 6 7 8 9

4 10 11 12 13 14

l

m

i=l(1+1)_+m+B
2

The expressions for indices starting at one will use i andj to represent

the row and column indices of the lower triangular matrix. The parameter D

is defined as the maximum i or j permitted. The starting bias B specifies the

linear array index of the (1,1) element. Therefore, B=I if starting at the

beginning ofthearray.

(63)

(64)

192

Column-majorordering

123 4 5 j

1 1

2 2 6

3 3 7 10

4 4 8 11 13

5 5 9 12 14 15

i

i_ D(D+I) (D-j+IXD-j+2)
2 2

+(i-j)+B

1= j(2D+I-j) D+(i-I)+B
2

(65)

(66)

(67)

Row-major ordering

1 2 3 4 5

1 1

2 2 3

3 4 5 6

4 7 8 9 10

5 11 12 13 14 15

i

I= (i-1)i +(j_I)+B
2

(68)

(69)

193

D.3 Mapping to Degree-major Coefficient Storage

The triangular storage patterns are useful when working separately

with the cosine and sine terms of the spherical harmonic expansion. However,

when working with the entirety of the coefficients, it is ot_en convenient to

group the terms such that terms of the same degree appear contiguous in a

linear army. An example is the formation of the partial derivatives with

respect to the gravity field coefficients. Different observation datatypes may

calculate partials to different degree and orders. By using a degree-major

storage pattem, contiguous arrays aligned at the (0,0) coefficient will map

correctly into the information matrix.

The following is an example of the linear array indices of the degree-

major storage for a set of coefficients to degree and order 4.

0 -
1 2 - 3

4 5 6 - 7 8

9 10 11 12 - 13 14 15

16 17 18 19 20 - 21 22 23 24

The key to indexing degree-major storage is to recognize that the

number of elements per degree is the sequence of odd integers. The linear

array index for the first element of degree l may be determined from the prefix

sum of the odd integers.

194

(70)

_--'(2i- 1) = n 2
i=1

Therefore the first element of degree l appears at linear array index/2.

The indexes for general l and m appear below.

(71)

m_0

Expressions for indexing starting with one may be developed similarly.

(72)

195

Appendix E PLAPACK Virtual Objects

The integration of virtual memory functionality into the PLAPACK

library provides the capability to manipulate data located on disk storage

devices. At the application level, the new functionality requires only a few

new PLAPACK methods. The implementation of the data mapping routines

changes significantly. The organization of the PLAPACK object parameters

reflect the natural partitions of disk and parallel memory. The changes in the

infrastructure maintain the abstraction of the linear algebra object at the

application level.

E.1 PLAPA CK Object Spaces : View, Global and Virtual

The memory hierarchy in a distributed memory environment consists

of many different levels from the disk through register memory. The PBMD

philosophy addresses inter-processor communication and relies on vendor

routines to optimize single processor operations. The PLAPACK object only

maintains mappings from the abstract linear algebra entity (i.e., a matrix) to

the slower memory areas: local memory, parallel memory and disk.

The PLAPACK object consists of different sets of parameters to

describe the data mappings. Header information specifies the linear algebra

object type and ownership of the object. Virtual space parameters describe the

196

disk residentdatamappingof a linearalgebraobject. Global spacedescribe

the memory residentdatamappingof a linear algebraobject. View space

parametersdescribetheportion of the dataavailableto the application. The

typicaluserof PLAPACK will only work in termsof view spaceparameters.

A list of asamplingof PLAPACKobjectmembersandtheir associatedspace

is presentedin Table16.

197

Member Description

Type of PLAPACK object

Local Width

Space

HeaderObject Type

Template Structure defining distribution Header

Datatype Type of data Header

Virtual Length Row dimension of the virtual space Virtual

Virtual Width Column dimension of the virtual space Virtual

Virtual Align Row Row alignment of the virtual space Virtual

Virtual Align Column Column alignment of the virtual space Virtual

PLAPACK File Structure PLAPACK structure containing the machine specific Virtual
information required to access data located on disk

Views Counter tracking the number of objects referencing the Global

same global space

Master Length Row dimension of the global space Global

Master Width Column dimension of the global space Global

Master Align Row Row alignment of the global space Global

Master Align Column Column alignment of the global space Global

Master Buffer Address of the beginning of the local global data buffer Global

Local Leading Dimension Leading dimension of the local global data buffer Global

Global Length Row dimension of the view space View

Global Width Column dimension of the view space View

Global Align Row Row alignment of the view space View

Global Align Column Cohtmn alignment of the view space View

Buffer Address of the beginning of the local view data buffer View

Local Length Row dimension of the local view data buffer View

Colmnn dimension of the local view data buffer View

Table 16 Sample of PLAPACK Object Members

198

For solely memory resident objects, global space parameters specify all

memory mapping information. For virtual objects, global space behaves as a

layer of cache memory between the disk and the application.

All parameters depend on the type of linear algebra object. Object

creation routines set header and virtual space parameters according to the

object type. Likewise, library routines call object specific methods to set

global space and view space parameters.

Manipulations of view space parameters are restricted by the

boundaries of virtual and global spaces. The view of a memory resident

object cannot exceed the boundaries of global space. The view of a virtual

object cannot exceed the bounds of virtual space. In addition, if global space

has been attached to a virtual object, and attempt to create a view outside the

global space boundaries will cause the current global space to be released and

a new global space equivalent to the size of the view will be attached.

Spaces may not be attached to the PLAPACK object in an arbitrary

order. Table 17 presents the required ordering when attaching spaces to an

object.

199

Object Status

Empty Object

Header Det'med

Header Defined

Virtual Space Attached

Header Def'med

Global Space Attached
Header Defined

Virtual Space Attached

Global Space Attached
Header Defined

Virtual Space Attached

View Space Attached
Header Def'med

Global Space Attached

View Space Attached
Header Def'med

Virtual Space Attached

Global Space Attached

View Space Attached

Permitted Actions

Define Header

Free Object

Attach Virtual Space

Attach Global Space

Free Object
Attach Global Space

Attach View Space

Remove Virtual Space

Attach View Space

Remove Global Space

Attach View Space
Remove Global Space

Attach Global Space

Remove View Space

Remove View Space

Remove View Space

Table 17 Ordering Restrictions on Layering of Object Spaces

E.2 Utility Functions for Space Management

The following low level infrastructure routines facilitate the attaching

and detaching of object spaces. Routines specified in all capitals are macros.

pla_oblect_create

pla_oblect_free

plaJnltlalize_vlrtual

plaJnitlallze_global

plaJnltlalize_vlew

Creates an empty PLAPACK object structure.

Frees an empty PLAPACK object structure.

Initializes virtual space parameters to default
values.,

Initializes global space parameters to default
values.

Initializes view space parameters to default
values.

200

pla seL<object>_virtual

pla_seL.<object>_global

pla_seL<object> view

pla remove_virtual

pla remove_gIobal

pla_remove_vlew

pladuplicate_object

pla duplicate_virtual

pla_dupllcate_global

pla_duplicate_view

PLAJS_VIRTUAL SPACE

PLA_IS_GLOBAL...SPACE

PLAJS_VIEW_SPACE

PLA_IS_SAME_VIRTUAL_SPACE

PLA_IS_SAME_GLOBAL_SPACE

PLA_IS_SAME_VIEW_SPACE

pla_ls_vlew_lnslde_global

Sets virtual space parameters according to

specified dimensions and alignments. A static
PLA._.File structure is allocated for each virtual

space.

Sets global space parameters according to virtual

space parameters and specified global space
dimensions and alignments.

Sets view space parameters according to global

space parameters and specified view space

dimensions and alignments.

Removes virtual space references from the object

and re-initializes header parameters. An empty
object is returned.

Removes global space references from the
object. If object is memory resident, header

parameters are re-initialized and an empty object
is returned.

Removes view space references from the object.

Duplicates header information from one object to
another.

Duplicates virtual space information from one

object to another. Global space and view space
is left tmdefmed.

Duplicates virtual and global space information
from one object to another. View space is left
undefined.

Duplicates virtual, global and view space

information from one object to another.

Returns TRUE if virtual space is attached.

Returns TRUE if global space is attached.

Returns TRUE if view space is attached.

Determines if two obJects share identical virtual
space. Always false for memory resident objects.

Determines if two objects share identical global

space.

Determines if two objects share identical view

space.

Determines if specified view occurs within
current global space.

201

pla_ls_vlew_inslde_vlrtual

pla._seLvlew

Determines if specified view occurs within

current virtual space. Always false for memory

resident objects.

Low level view management routine which calls

appropriate object space management routines.

Inputs are dimensions and alignments respective
to the template.

E.3 File lfO Implementation

PLAPACK implements block partitioned algorithms to achieve high

performance. Virtual object operations require movement of the linear algebra

blocks between disk and parallel memory. The structure of blocks depends on

the data access pattern required by the linear algebra operation. Two primary

types of blocking should be considered. The first blocking attempts to

maximize the memory resident performance by transferring large, square

blocks. The second blocking attempts to most effectively overlap

computation and communication by transferring rectangular panels.

To illustrate the different access patterns, allow nbmatnx to be the

dimension of the largest square block and nbp_el to be the lesser dimension of

the rectangular panel. The different blocking sizes may be defined as nbma_ix x

nbp_el, nbpanel x nbma_ix or nb_a_ix x nbma_ix. A virtual GEMM routine using a

rank-k update requires the first blocking pattern for matrix A, the second

blocking pattern for matrix B and the third blocking pattern for matrix C.

202

nbp_,l nbm_

+l /

._.___>

Figure 23 Out-of-Core Blocking Patterns for GEMM

The most efficient file I/O operations occur when the transferred data

is organized into contiguous memory segments. The blocking requirements of

the algorithm dictate which mapping should be used. While satisfactory for

the GEMM operation, many algorithms access data from objects differently at

different stages of the computation. For example, the Cholesky factorization

requires all three blocking patterns.

I1"$111

Figure 24 Out-of-Core Blocking Patterns for Cholesky

203

To simplify the implementation, only a single blocking size, nbvin_l is

implemented. All linear algebra operations are applied to square blocks which

optimize the global BLAS operations. However, a greater amount of memory

will be necessary for double buffering in asynchronous I/O operations.

E.I.1 Miscellaneous Implementation Issues

The first issue addresses the relationship between the virtual object

view and the I/O block boundaries. Performing I/O on views which do not

occur at block boundaries becomes difficult. I/O operations must include the

entire block. Transferring the data associated with views which do not occur

on block boundaries may require multiple I/O requests. Multiple requests

creates problems for asynchronous operation since multiple buffers and

multiple request objects are required.

For synchronous I/O operations, the object view expands to the nearest

I/O block boundaries which encompass the original view. Recursive I/O

requests on the larger view and memory-to-memory copies achieve the desired

result. Asynchronous I/O operations for views which do not occur on block

boundaries are not support due to the requirements of multiple concurrent I/O

operations and multiple request objects.

204

The secondissue addressesthe structureof the disk files. Each

processor assigned ownership of the linear algebra object possesses ownership

of a file which contains the object data. The file consists of constant length

records with the records corresponding to the column-major ordering of the

linear algebra blocks. The record length is determined by calculating the

memory usage on processor (0,0) of an nbvirt_at x nb,,irtu,,l matrix with row and

column alignments of zero. Each processor responsible for I/O transfers

local_length x local_width elements to/from the local file block. If the block is

not full, the data is packed into the first local_length x loeaLwidth elements of

the record.

E. 4 Application Routines

The PLAPACK I/O interface routines are intended to be general

enough to support a wide range of functionality.

especially those associated with asynchronous

However, I/O operations,

operations, vary widely

between architectures. The current specification defines different I/O types

which are either standardized or may be associated with a particular

architecture. Each I/O type may or may not permit asynchronous operations.

A list of supported I/O types are presented in Table 18.

205

I/O Type [

PLA_ANSI_C

PLA UNIX_IO

Architecture

All

All UNIX

Async Allowed

Never

Cmy, IBM

Table 18 PLAPACK I/O Types

PLAPACK I/O routines consists of two groups analogous to global

and local BLAS operations. Global I/O operations are collective and manage

view boundary conditions and asynchronous requests. Local I/O operations

are local to the individual processor and manage the architecture dependencies

of the operation. Calling the local I/O operation directly is not recommended.

All I/O routines operate only on virtual objects and may require different

parameter lists for each I/O type.

lnt PLA_Open (PLA_Obj object,
|nt iotype,
... /* vargs */);

int PLA_Open (PLA_Obj object,
PLA_ANSI_C,

char * filename,
char * mode);

int PLA_Open (PLA__Obj object,
PLA_UNIX_IO,

char * filename,
lilt mode);

206

lnt PLA_Local_open

int PLA_Local_open

int PLA_Local_open

(PLA_Obj object,
lnt iotype,
... /* vargs */);

(PLA_Obj object,
PLA_ANSI_C,

char * filename,

char * mode);

(PLA_Obj object,
PLA_UNIX_IO,

char * falename,

tnt mode);

int PLA Close (PLA_Obj object);

int PLA_Local_close (PLA_Obj object);

The PLA_Open method initializes a virtual object for file I/O operations

according to the information contained in the PLAPACK object and the I/O

type specified in the parameter list. Each processor responsible for I/O opens

a file ftlename_<row lndex>,<column Index> according to the permissions

specified in the parameter list. The PLA Close method finalizes the I/O

operations and closes the file.

int PLA Read

int PLA Local_read

int PLA_Write

[int PLA Local write

(PLA_Obj object);

(PLA_Obj object);

(PLA_Obj object);

(PLA_Obj object);

The PLA_Read and PLA_Wrtte methods perform the synchronous I/O

operations according to the current view of the object and the I/O type

specified in the PLA_Open method.

207

lnt PLA_Iread

int PLA Local_lread

int PLA_Iwrite

lnt PLA_Local_iwrite

(PLA_Obj object,
PLA_Request * request);

(PLA_Obj object);

(PLA_Obj object,
PLA_Request * request);

(PLA_Obj object);

The PLA_Iread and PLA_Iwrite methods perform the synchronous I/O

operations according to the current view of the object and the I/0 type

specified in the PLA_Open method. The PLA_Request and PLA_Status objects

are used to identify and return information concerning posted asynchronous

operations. Asynchronous I/0 operations are only supported for views which

require transfer of a single disk record.

int PLA_Wait (PLA_Request * request, PLA_Status * status);

int PLA_Test (PLA Request * request, PLA_Status * status);

int PLA_Local_wait (PLA_Request * request, PLA_Status * status);

int PLA_Local_test (PLA_Request * request, PLA_Status * status);

The PLA_Waitand PLA_Test methods are, respectively, blocking and non-

blocking test for completion operations.

208

Appendix F Cholesky Factorization

F.1 Level 2 BLAS, Right Looking

The Cholesky factorization may be developed in terms of a block

partitioned algorithm. The derivation begins by observing that the Cholesky

factorization of A is a lower triangular matrix L such that A = LL r . The

matrices are partitioned into quadrants such that the top left comer consists of

a single scalar value. The asterisk represents the transposed portions of the

matrix.

[o..]:[,.olr,. ,'ol
.AIO All tlo &,JL o L, ,J

The relationship between the factored matrix and the original matrix

may be recovered by explicitly performing the matrix multiplication.

a0o = l_o

Alo = Lloloo

At1 = LloLro + L.Lrl

The operations in Equation (74) may be rearranged to form the

factorization of A which overwrites the previous values in memory. The

algorithm computes the square root of the top left element. The elements of

the column vector are scaled by the reciprocal of the result. The remainder of

(73)

(74)

209

thematrix is updatedvia a rank-1update. The factorizationof the remaining

submatrixproceedsrecursively.

aoo<---a4T -

Al ° _-- 1 Ax °
loo

All _'- All - AtoAlro

The algorithm expressed in Equation (75) is the Level 2 right-looking

Cholesky factorization. The algorithm is classified as Level 2 BLAS since the

majority of operations occurs during the rank-1 matrix update. The

factorization is termed right-looking because all operations occur on or to the

right of the current matrix column. Figure 25 presents the FORTRAN code

fragment to perform the decomposition of lower triangular matrix A of

dimension N with leading dimension LDA.

(75)

I DO I=I,N

A(I,I) *. SQRT (A(I,I))
DSCAL (N-I, 1.0d+0 / A(I,I), A(I+I,I), LDA)

DSYR ("LOWER", N-I, -1.0d+0, A(I+I,I), 1, A(I+I,I+I), LDA)
ENDDO

Figure 25 Level 2 Right-Looking Cholesky Factorization

F.2 Level 2 BIAS, Right Looking

The extension of the Cholesky algorithm to Level 3 BLAS operations

begins by allowing the top left partition of A to consist of an nb x nb

210

submatrix.Theremainderof thederivationis analogousto theLevel2 BLAS

factorization.Thematricesareagainpartitionedintoquadrants.However,the

top left comer is now a matrix block. The asterisk represents the transposed

portions of the matrix.

AlO All-_" Zlo L,,J L o L[,]

The relationship between the factored matrix and the original matrix

may be recovered by explicitly performing the matrix multiplication.

Aoo = LooLroo

Alo = LloLroo

A u = LioLro + LttLrl

The operations in Equation (77) are again rearranged to form the

factorization of A which overwrites the previous values in memory. The

algorithm computes the Level 2 factorization of the top left submatrix A0o.

The column panel A10 is updated via a Level 3 triangular solve with multiple

right-hand-sides. The remainder of the matrix is updated via a Level 3

symmetric mnk-k operation. The factorization of the remaining submatrix

proceeds recursively.

(76)

(77)

211

Aoo,-- Chote ,(Aoo)
Alo <---AtoA_o r

Al_ <-- Art - AioA(o

The Level 3 fight-looking Cholesky algorithm may also be coded in a

straight forward manner. Figure 26 presents the FORTRAN code fragment to

perform the decomposition of lower triangular matrix A of dimension N with

leading dimension LDA.

(78)

DO I=I,N,NB
NBT=MIN(NB,N-I+I)
BLAS2_CHOL (NBT, A(I,I), LDA)
DTRSM("RIGHT", "LOWER", "TRANS', "NONUNIT",

N-I+I-NBT, NBT,
1.0d+0, A(I,I), LDA, A(I+NBT,I), LDA)

DSYRK ("LOWER", "NOTRANS", N-I+I-NBT, NBT,
-l.0d+0, A(I+NBT,I), LDA,
1.0d+0, A(I+NBT,I+NBT), LDA)

ENDDO

Figure 26 Level 3 Right-Looking Cholesky Factorization

F.3 Level 3 BLAS, Left Looking

A left-looking variant to the Cholesky factorization may also be

developed. The derivation of the Level 3 lett-looking algorithm begins with

the partitioning presented in Equation (79) such that block (1,1) is nb x nb.

The asterisks represent the transposed portions of the matrix.

212

A00Alo

[A_o
..]ooil! L2,All * -- Lt0 Lll 0 LI T Lrl

A21 A m LL20 L:I L22 0 L2r

Assuming that the factorization of the first column partition has been

accomplished, the relationship between block (1,1) and (2,1) of the factored

matrix and the original matrix may be recovered by explicitly performing the

matrix multiplication.

All = LloLro + LllLrl

A21 = L2oLro + L21L1TI

The operations in Equation (80) are rearranged to form the

factorization of the second column panel of A which overwrites the previous

values. The algorithm begins by updating the current column based on

previous factorizations.

symmetric rank-k update.

Submatrix Al,1 is updated via a Level 3 BLAS

Submatrix A2,1 is updated via a Level 3 BLAS

matrix-matrix multiplication. The factorization of the column panel proceeds

similarly to the left-looking algorithm.

Atl <---All - AloAlro

A21 <---A21 - A2oA1 r

Aoo +-- BLAS2 Cholesky(Aoo)

Alo <---AloA_o r

(79)

(80)

(81)

213

The BLAS Level 3, left-looking Cholesky algorithm may also be

coded in a straight forward manner. Figure 27 presents the FORTRAN code

fragment to perform the decomposition of lower triangular matrix A of

dimension N with leading dimension LDA.

DO I=I,N,NB
NBT=MIN(NB,N-I+I)
DSYRK ("LOWER", "NOTRANS', NBT, I-l,

-1.0d+0, A(I,1), LDA, 1.0d+0, A(I,I), LDA)
DGEMM ("NOTRANS", "TRANS", N-I+I-NBT, NBT, I-l,

-1.0d+0, A(I+NBT,1), LDA, A(I,1), LDA,
1.0d+0, A(I+NBT,I), LDA)

BLAS2_CHOL (NBT, A(I,I), LDA)
DTRSM("RIGHT", "LOWER", "TRANS', "NONUNIT',

N-I+I-NBT, NBT,
1.0d+0, A(I,I), LDA, A(I+NBT,I), LDA)

ENDDO

Figure 27 Level 3 Left-Looking Cholesky Factorization

214

Appendix G Triangular Solve Multiple RHS

The parallel implementation of TRSM requires the statement of the

algorithm in terms of matrix blocks. Two variants of the Level 3 BLAS

triangular solve multiple fight-hand-sides apply to the matrix inversion as

implemented in this research. The BLAS parameters LEFT, LOWER,

NOTRANS and NONUNIT specify the first case. The BLAS parameters

LEFT, LOWER, TRANS and NONLINIT specify the second case. For

brevity, the first case will be referred to as the LLNN case, and the second as

the LLTN case.

G.1 LLNN Case

The derivation of the LLNN case of TRSM begins by observing the

operation produces the matrix X such that AX=B where A is a lower triangular

matrix with a non-unit diagonal. Matrix A is partitioned into quadrants such

that A0,0 is an nb x nb submatrix.

[0T ol[,01
The relationship between the unknown matrix X and the known

matrices A and B may be recovered by explicitly performing the matrix

multiplication.

215

(82)

The operation may be

matrixB.

&oXo=/_o
Al,oXo + Al,lX 1 = B 1

rewritten such that the

-IX,Xo_ _,o o
X__ X, - a, oXo

result overwrites

G.2 LLTN Case

The derivation of the LLTN case of TRSM begins by observing the

operation produces the matrix X such that A rX = B where A is a lower

triangular matrix with a non-unit diagonal. Matrix A is partitioned into

quadrants such that A r is an nb x nb submatrix.0,0

[#o
The relationship between the unknown matrix X and the known

matrices A and B may be recovered by explicitly performing the matrix

multiplication.

(83)

(84)

(85)

(86)

216

The operation may be rewritten such that the result overwrites

matrix B.

(87)

217

Appendix H Memory Efficient Subarc Update

Algorithm

In the satellite tracking observable, the initial conditions of the satellite

and the errors in the geopotential perturb the range measurements. The effect

of estimating satellite initial conditions as well as other subarc parameters

contribute directly to the geopotential covariance. The following derivation

demonstrates that the subarc contributions may be applied to the geopotential

covariance through a series of updates which may or may not include the

explicit estimation of the subarc parameters. In addition, the method

conserves memory by permitting the discard of previous subarc information.

Equation (88) presents the relationship between the information matrix

and the covariance matrix for the batch estimate. The upper diagonal block of

each matrix corresponds to the subarc parameters, and the lower diagonal

block corresponds to the geopotential coefficients. The off-diagonal blocks

correspond to the correlation information between the subarc parameters and

the geopotential coefficients. The estimation of multiple subarcs will create a

block diagonal structure for submatrix N0,0.

o]

218

(88)

The matrix

equations.

multiplication leads to the following system of matrix

No.oPo. o + N_.oP1.o = I

Nl.oPo, o + NlaPl. o = 0

No,oPl.ro + N_oP_, , = 0

Nl,oPlro + Nl,1P1,1 = I

The rearrangement of the third and fourth expressions in Equation (89)

lead to the expressions in Equation (90).

(89)

-1 T= -N0,0N1.0Pt.t

Combining the equations and solving for PI,1.

(90)

-1 -1 T
PI., = N,., (I - N,,oNo.oN,.oPl.,)

Pll, - NI,I-I Ni,oNo,oNl,opl,l-1r = N-11,1

= - Nl. 1Ni,oNo.oNl,o) N -1Pl,l (I -l -1 r-1 1,1

The inversion of the final expression in Equation (91) yields an

expression for the inverse geopotential covariance matrix in terms of the

geopotential information matrix, the subarc information matrix and the

correlation information.

(91)

-I iv
p-l = N1,1 _ Nl,oNo,oNl,o1,1

(92)

219

The expression in Equation (92) representsan update to the

geopotentialinformationmatrix. Due to the block diagonalnatureof No,o,

Equation (92) may be expressed as a series of updates with each update

corresponding to a kth subarc.

. IN.j- O,Oo 0 0 _:Oo

1,1 I O0 "'" 0 "P'-'= N1'-[N"°[° "'" Nt'°k N-' k' 0 o.o NrJ[,.o.

' '1p-ll,l = Nl.I - Nl,°N°'°Nt'° k
k

The algorithm implementing Equation (94) proceeds in a straight

forward manner. For each subarc, the accumulation of information matrices

N0,0, Ni,0 and N1,1 occurs in the conventional manner. At the completion of

the subarc, the information matrix Nl,1 is updated using Equation (94). The

memory used for storing the subarc information may be reused.

(93)

(94)

220

Bibliography

Astfalk, Greg. Fundamentals and practicalities of MPP. The Leading Edge.

August, September, and October 1993.

Bate, R. R., D. D. Mueller and J. E. White. Fundamentals of

Astrodynamics. New York: Dover Publications, 1971.

Beck, Kent, and Ward Cunningham. A Laboratory for Teaching Object-

Oriented Thinking. Proceedings of OOPSLA '89. October 1989.

Bertiger, W. I., et al. GPS precise tracking of TOPEX/POSEIDON: Results

and implications. Journal of Geophysical Research, Vol. 99, No.
C12. December 1994.

Bettadpur, Srinivas V. A Simulation Study of High Degree and Order

Geopotential Determination Using Satellite Gravity Gradiometry.

Doctoral Dissertation. The University of Texas at Austin, May 1993.

Bettadpur, Srinivas V., Bob E. Schutz, and John B. Lundberg. Spherical

harmonic synthesis and least squares estimation in satellite gravity

gradiometry. Bulletin Geodesique, Vol 66. 1992.

Bock, Yehuda. Reference Systems. GPS for Geodesy, Alfred Kleusberg and

Peter J. G. Teunissen, ed. Berlin: Springer-Verlag, 1996.

Chtchelkanova, Almadena, John Gunnels, Greg Marrow, James Overfelt, and

Robert van de Geijn. Parallel Implementation of BLAS: General

Techniques for Level 3 BIAS. Concurrency: Practice and

Experience, 1996.

Choi, J., et al. A Proposal for a Set of Parallel Basic Linear Algebra

Subprograms. UT CS-95-292, LAPACK Working Note 100.

May 1995

Choi, J., et al. ScaLA_PACK: A Protable Linear Algebra Library for

Distributed Memory Computers - Design Issues and Performance. UT

CS-95-283, LAPACK Working Note 95. March 1995.

221

Choi, Jaeyoung,et al. The Design and Implementation of the SCALAPACK

LU, QR and Cholesky Factorization Rotuines. ORNL/TM-12470, Oak

Ridge National Laboratory. September 1994.

Choi, Jaeyoung, Jack J. Dongarra and David W. Walker. PUMMA: Parallel

Universal Matrix Multiplication Algorithms on Distributed Memory

Concurrent Computers. ORNL/TM-12252, Oak Ridge National
Laboratory. May 1993.

Coffey, Shannon L., Edna Jenkins, Harold L. Neal and Herbert Reynods.

Parallel Processing of Uncorrelated Observations into Satellite

Orbits. Proceedings of AAS/AIAA Astrodynamics Specialist

Conference. February 1996.

Columbo, O. L. Notes on the Mapping of the Gravity Field Using Satellite

Data. Mathematical and Numerical Techniques in Physical

Geodesy, Hans Sunkel, ed. Springer-Verlag: Berlin, 1986.

Colombo, Oscar L. Precise GPS Orbits for Geodesy. Advances in Space

Research, Vol. 14, No. 5. 1994.

Columbo, Oscar L. and Michael M. Watldns. Satellite Positioning. Review

of Geophysics, Supplement, U.S. National Report to I.U.G.G.

April 1991.

Colombo, Oscar L. Advanced Techniques for High-Resolution Mapping of

the Gravitational Field. Theory of Satellite Geodesy and Gravity

Field Determination. F. Sanso, R. Rummel, eds. Berlin: Springer-

Verlag, 1989.

Colombo, Oscar L. Numerical Methods for Harmonic Analysis on the Sphere.

Reports of the Department of Geodetic Science: Report No. 310. Ohio

State University, March 1981.

D'Azevedo, E. F., and Jack Dongarra. The Design and Implementation of the

Parallel Out-of-core ScaLAPACK LU, QR and Cholesky Factorization

Routines. UT CS-97-347, LAPACK Working Note 118. University of

Tennessee, January 1997.

222

Danby, J. M. A. Fundamentals of Celestial Mechanics.

William-Bell, 1988.

Richmond:

Demmel, James W., Michael T. Heath, and Henk A van der Vorst. Parallel

numerical linear algebra. UT CS-93-192, LAPACK Working Note 60.

University of Tennessee, 1993.

Dongarra, Jack, Jeremy Du Croz, Iain Duff, and Sven Hammarling. A Set of

Level 3 Basic Linear Algebra Subprograms. TOMS, Vol. 16, No. 1.
March 1990.

Dongarra, Jack and David Walker. The Design of Linear Algebra Libraries

for High Performance Computers. UT CS-93-188, LAPACK

Working Note 58. University of Tennessee, June 1993.

Dongarra, Jack J., Robert van de Geijn, and David W. Walker. ScalabiBty

Issues Affecting the Design of a Dense Linear Algebra Library.

Journal of Parallel and Distributed Computing, Vol. 22, No. 3.

September 1994..

Dongarra, Jack, J., Jeremy Du Croz, Sven Hammarling, and Richard J.

Hanson. A Extended Set of Fortran Basic Linear Algebra

Subprograms. Argonne National Laboratory Mathematics and

Computer Science Division, Technical Memorandum No. 41.

September 1986.

Edwards, Harold Carter. MMPh Asynchronous Message Management for

the Message-Passing Interface. TICAM Report 96-44. Texas

Institute for Computational and Applied Mathematics, The University

of Texas at Austin. October, 1996.

Edwards, Carter, Po Geng, Abani Patra, and Robert van de Geijn. Parallel

Matrix Distributions: Have we been doing it all wrong? Department

of Computer Science TR-95-40, The University of Texas at Austin.
October 1995.

Gelb, Arthur. Appfied Optimal Estimation. Cambridge: MIT Press, 1974.

Greenburg, Michael D. Foundation of Applied Mathematics. Englewood

Cliffs: Prentice-Hall, 1978.

223

Gropp, William and Ewing Lusk.
Implementation of MPI.

National Laboratory, 1996.

User's Guide for mpich,
ANL/MCS-TM-ANL-96/6.

a Portable

Argonne

Golub, G. H. and G. F. van Loan. Matrix Computations. John Hopkins

Press, 1989.

Gustafson, John L. Compute-Intensive Applications on Advanced Computer

Architectures. Parallel Computing '91, D. J. Evans, G. R. Joubert

and H. Liddell, ed. North-Holland: Amsterdam, 1992.

Gustafson, John L., Gary R. Montry, and Robert E. Benner. Development of

Parallel Methods for a 1024-Processor Hypercube. SIAM Journal of

Scientific and Statistical Computing. Vol. 9, No. 4. July 1988.

Haagmans, R. H. N., and M. van Gelderen. Error Variances-Covariances of

GEM-T1: Their Characteristics and Implications in Geoid

Computations. Journal of Geophysical Research, Vol. 96, No. B12.
November 1991.

Ja Ja, Joseph. An Introduction to Parallel Algorithms. Reading: Addison-

Wesley, 1992.

Kemighan, Brian W. and Dennis M. Ritchie. The C Programming

Language. Englewood Cliffs: Prentice-Hall, 1978.

Klimkowski, Kenneth and Robert van de Geijn. Anatomy of a Parallel Out-

of-Core Dense Linear Solver. Procedings of the International

Conference on Parallel Processing, Volume III, 1995.

Konopliv, Alex. High Resolution Gravity Modeling Using Parallel

Supercomputers. JPL Interoffice Memorandum 312.D-95-103.
October 1995.

Koop, Rayboud. Global Gravity Field Modeling Using Satellite Gravity

Gradiometry. Netherlands: Delft, 1993.

Lundberg, John B. Computational Errors and Their Control in the
Determination of Satellite Orbits. Doctoral Dissertation. The

University of Texas at Austin, 1985.

224

Lundberg, John B. Multistep Integration Formulas for the Numerical

Integration of the Satellite Problem. Masters Thesis. The

University of Texas at Austin, 1981.

Maybeck, Peter S. Stochastic Models, Estimation and Control, Vol. 1. New

York: Academic Press, 1979.

McNutt, Marcia. If Only We Had Better Gravity Data... Geodesy in the

Year 2000. National Research Council, Committee on Geodesy.

Washington D.C.: National Academy Press, 1990.

Melbourne, William G., E.S. Davis, Thomas P. Yunck, and Byron D. Tapley.

The GPS flight experiment on TOPEX/Poseidon. Geophysical

Research Letters, Vol. 21, No. 19. September 1994.

Moyer, Theodore D. Mathematical Formulation of the Double-Precision

Orbit Determination Program (DPODP). JPL Technical Report 32-

1527. May 1971.

National Aeronautic and Space Administration. New Missions Selected to

Study Earth's Forest and Gravity Field Variability. NASA Press

Release 97-46. March 1997.

Nerem, R. S., et al. Gravity Model Development for TOPEX/POSEIDON:

Joint Gravity Models 1 and 2. Journal of Geophysical Research,

Vol. 99, No C12. December 1994.

Nerem, R. S., C. Jekeli and W. M. Kaula. Gravity field determination and

characteristics: Retrospective and prospective. Journal of

Geophysical Researeh, Vol. 100, No B8. August 1995.

Nyhoff, Larry and Sanford Leestma. FORTRAN 77 for Engineers and

Scientists. New York: Macmillan, 1985.

Paik, Ho Jung et al. Mission Concepts for a Superconducting Gravity

Gradiometer Earth Survey to Establish a Baseline for Global Change.

Proceedings of the 1996 Spring Meeting of the American Geophysical

Union. May 1996.

225

Pavlis, Erricos C. Gravity FieM Estimation from Future Space Missions:

TOPEcWPoseidon, Gravity Probe B, and ARISTOTELES. From Mars

to Greenland: Charting Gravity with Space and Airborne

Instruments. O. L. Colombo, ed. Berlin: Springer-Verlag, 1992.

Press, William H. et al. Numerical Recipes: The Art of Scientific

Computing (FORTRAN Version). Cambridge: Cambridge Uni

versity Press, 1989.

Rapp, R. H. Global Geopotential Solutions. Mathematical and Numerical

Techniques in Physical Geodesy, Hans Sunkel, ed. Springer-Verlag:

Berlin, 1986.

Rapp, Richard H., Nikolaos K. Pavlis and Yan Ming Wang. High Resolution

Gravity Models Combining Terrestrial and Satellite Data. From

Mars to Greenland: Charting Gravity with Space and Airborne

Instruments. O. L. Colombo, ed. Berlin: Springer-Verlag, 1992.

Rapp, Richard H. Combination of Satellite, Altimetric and Terrestrial Gravity

Data. Theory of Satellite Geodesy and Gravity Field

Determination, F. Sanso, R. Rummel, eds. Berlin: Springer-Verlag,

1989.

Reigber, Christoph. Gravity Field Recovery From Satellite Tracking Data.

Theory of Satellite Geodesy and Gravity Field Determination, F.

Sanso, R. Rummel, eds. Berlin: Springer-Verlag, 1989.

Roy, A. E. Orbital Motion. Bristol: Adam Hilger, 1988.

Rummel, R. Spherical Harmonic Analysis of Satellite Gradiometry.

Netherlands: Delft, 1993.

Rummel, R. Satellite Gradiometry. Mathematical

Techniques in Physical Geodesy, Hans Sunkel, ed.

Berlin, 1986.

and Numerical

Springer-Verlag:

Schildt, Herbert. C: The Pocket Reference, Second Edition. Berkeley:

Osborne McGraw-Hill, 1991.

226

Schrama,Ernst J O. Gravity Field Error Analysbs: Applications of Global

Positioning System Receivers and Gradiometers on Low Orbiting

Platforms. Journal of Geophysical Research, Vol. 96, No. B12.
November 1991.

Schuh, W.-D., H. Sunkel, W. Hausleitner and E. Hock. Refinement of

Iterative Procedures for the Reduction of Spaceborne Gravimetry

Data. ESA CIGAR IV, Final Report. June 1996.

Schutz, Bob E. and Gregory A. Baker. Application of Massively Parallel

Processing Techniques to Least Squares Problems in Satellite Gravity

Gradiometry. FY95 Annual Report, NASA Earth and Space Science

Project, 1996.

Schutz, B. E., et al. Dynamic orbit detemination using GPS measurements

from TOPEX/Poseidon. Geophysical Research Letters, Vol. 21, No.

19. September 1994.

Scott, Steven L. Synchronization and Communication in the T3E

Multiprocessor. Proceedings of ASPLOS-VII. October 1996.

Sneeuw, Nico. Covariance Propagation of Block-diagonal Covaraince

Matrices from Error Simulations. June 1995.

Snir, Marc, et al. MPI: The Complete Reference. Cambridge: MIT, 1996.

Sidani, Majed and Bill Harrod. Parallel Matrix Distributions: Have we been

doing it all right? LAPACK Working Note ??. University of

Tennessee, 1996.

Szabo, Bela. The Estimation of the Earth's Gravity Field. Reports of the

Department of Geodetic Science: Report No. 369. Ohio State

University, June 1986.

Tapley, B. D., B. E. Schutz, R. J. Eanes and M. M. Watkins. Lageos Laser

Ranging Contributions to Geodynamics, Geodesy, and Orbit

Dynamics. Contributions of Space Geodesy to Geodynamics: Earth

Dynamics and Geodynamics. c 1993. American Geophysical Union.

227

Tapley,B. D., B. E. SchutzandR. J. Eanes. Station Coordinates, Baselines,

and Earth Rotation From LAGEOS Laser Ranging: 1976-1984.

Journal of Geophysical Research, Vol. 90, No. Bll. September

1985.

Tapley, Byron D., et al. Precision orbit determination for

TOPEX/POSEIDON. Journal of Geophysical Research, Vol. 99,

No. C12. December 1994.

Tapley, Byron D. ASE 381P Statistical Estimation Theory, Class Notes. The

University of Texas at Austin. Spring Semester, 1991.

van de Geijn, Robert A. CS 391T Parallel Methods, Class Notes. The

University of Texas at Austin. Spring Semester, 1996.

van de Geijn, Robert A. Using PLAPACK: Parallel Linear Algebra

Package. Cambridge: MIT Press, 1997.

van de Geijn, Robert A. and Jerrell Watts. SUMMA: Scalable Universal

Matrix Multiplication Algorithm. UT CS-95-286, LAPACK Working

Note 96. April 1995.

van Gelderen, M. and R. Koop. The use of degree variances in satellite

gradiometry. Journal of Geodesy, No. 71. 1997.

Vanicek, Petr and Edward Krakiwsky. Geodesy: The Concepts.

Amsterdam: Elsevier, 1986.

Visser, P. N. A. M. et al. Global gravity field recovery from the

ARISTOTELES satellite mission. Journal of Geophysical Research,

Vol. 99, No. B2. February 1994.

Wallace, Scott T., P. J. Cefola and R. J. Prouix. Parallel Orbit Propagation

and the Analysis of Satellite Constellations. Proceedings of

AAS/AIAA Astrodynamics Specialist Conference. August 1995.

Wells, David E., et al. Guide to GPS Positioning. Fredericton, Canadian

GPS Associates, 1986.

228

Wells, William C., ed. Spaceborne Gravity Gradiometers.

Conference Publication 2305, 1983.

NASA

Zlotnicki, Victor. Common Interests in Geodetic and Oceanographic

Research. Geodesy in the Year 2000. National Research Council,

Committee on Geodesy. Washington D.C.: National Academy Press,

1990.

229

